Filters
total: 159
filtered: 149
Search results for: BIODEGRADABLE
-
The role of particulate and colloidal substrate in biological nutrient removal activated sludge systems
PublicationThe authors investigated COD fractionation according to the physical state (soluble/colloidal/particulate) in four wastewater treatment plants (WWTPs) in northern Poland. It was found that particulate and colloidal organic compounds constituted up to 70% of total COD. On the other hand, according to literature data, municipal wastewater contains readily and slowly biodegradable substrates in the amount of approximately 10-30% and...
-
One Year Evaluation of Material Properties Changes of Polylactide Parts in Various Hydrolytic Degradation Conditions
PublicationBiodegradable biocompatible materials are widely used in medical applications. Determining the possibility of using biodegradable materials depends on determining the changes in their parameters over time due to degradation. The current scientific research on biodegradable materials has presented results based on research methods characterized by the different geometry and cross-section size of the specimen, type of degradation...
-
Reactive extrusion of bio-based polymer blends and composites – Current trends and future developments
PublicationReactive extrusion is a cost-effective and environmentally-friendly method to produce new materials with enhanced performance properties. At present, reactive extrusion allows in-situ polymerization, modification/functionalization of polymers or chemical bonding of two (or more) immiscible phases, which can be carried out on commonly used extrusion lines. Although reactive extrusion has been known for many years, its application...
-
Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles
Publication: Due to rapid economic growth, the use of plastics in almost all areas of human life has significantly increased over recent decades, leading to massive pollution. Therefore, works dealing with sustainable and biodegradable polymer materials are vital now. Herein, sustainable MaterBi/poly(ε-caprolactone) (PCL)-based biocomposites, filled with diisocyanate-modified cellulose particles, were prepared and subjected to 12-week seawater...
-
Sustainable polymers targeted at the surgical and otolaryngological applications: Circularity and future
PublicationThe ongoing climate changes, high air and noise pollution have significant impact on humans’ health. This influence is especially visible in otolaryngology, which focuses on respiratory and hearing systems disfunctions. However, even though surgeries are done in response to diseases related to climate changes, they also have a negative impact on the environment, mostly connected with the inherence of single-use fossil fuel derived...
-
Pressure-induced flow processing behind the superior mechanical properties and heat-resistance performance of poly(butylene succinate)
PublicationWe propose a pressure-induced flow (PIF) processing method for the simultaneous enhancement of strength, toughness, and heat resistance of biodegradable poly(butylene succinate) (PBS). The pressure and temperature were systematically adjusted to optimize the tensile strength of PBS. Under the optimized processing conditions, the structured PBS was characterized by relatively high strength of 89.5 MPa, toughness of 21.4 kJ·m−2 ,...
-
Mechanical Properties of 3D Printed Parts and Their Injection Molded Alternatives Subjected to Environmental Aging
PublicationAdditive manufacturing is the technology used in medical, industrial, or lifestyle applications. The scientific literature include works reporting various manufacturing parameters’ influence on changes in additive manufacturing components’ mechanical behavior, especially with fused filament fabrication (FFF). The changes in mechanical strength and toughness of FFF compared to injection molding parts were studied. In the study,...
-
Industrial wastewater as an external carbon source for optimization of nitrogen removal at the "Wschod" WWTP in Gdansk (Poland)
PublicationCarbon source alternatives for denitrification belong to the highest research area priorities as they allow to optimize N removal within the existing capacities. In particular, some food industry effluents appear to be good candidates for such alternatives due to their high C/N ratios and high content of readily biodegradable organic fraction. The aim of this study was to determine the immediate effects of dosing different types...
-
Technological aspects of manufacturing polymer packaging materials degradable in seawater environment
PublicationIn recent years, the number of polymer materials used in the food packaging market was growing extremely fast. This contributed to depletion of non-renewable resources and more intense degradation of the environment due to resistant polymer. Therefore, such a dramatic situation has forced researchers to look for biodegradable materials, decomposable under action of microorganism. Currently, only a small number of researches examine...
-
Ecological and Health Effects of Lubricant Oils Emitted into the Environment
PublicationLubricating oils used in machines with an open cutting system, such as a saw or harvester, are applied in forest areas, gardening, in the household, and in urban greenery. During the operation of the device with an open cutting system, the lubricating oil is emitted into the environment. Therefore, the use of an oil base and refining additives of petroleum origin in the content of lubricants is associated with a negative impact...
-
Impact of influent wastewater quality on nitrogen removal rates in multistage treatment wetlands
PublicationNitrogen removal in treatment wetlands is influenced by many factors, and the presence of electron donors (biodegradable organic matter) and electron acceptors (nitrate ions) is the main limiting one; for obtaining these conditions, multistage treatment wetlands (MTWs) are required, where an extensive nitrification can be obtained in the first stages under aerobic conditions leaving then to the following anoxic/anaerobic stages...
-
Morphology, Thermo-Mechanical Properties and Biodegradibility of PCL/PLA Blends Reactively Compatibilized by Different Organic Peroxides
PublicationReactive blending is a promising approach for the sustainable development of bio-based polymer blends and composites, which currently is gaining more and more attention. In this paper, biodegradable blends based on poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared via reactive blending performed in an internal mixer. The PCL and PLA content varied in a ratio of 70/30 and 55/45. Reactive modification of PCL/PLA...
-
Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior
PublicationTitanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment,...
-
Impact of soluble organic matter and particulate organic matter on anammox system: Performance, microbial community and N2O production
PublicationIn this study, the effects of soluble readily biodegradable COD (sCOD) and particulate slowly biodegradable COD (pCOD) on anammox process were investigated. The results of the longterm experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity, to reach as high as 84.9% ±2.8% TN removal efficiency. Partial denitrification-anammox (PDN/anammox) and denitrification were proposed...
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Modeling organic nitrogen conversions in activated sludge bioreactors
PublicationFor biological nutrient removal (BNR) systems designed to maximize nitrogen removal, the effluent total nitrogen (TN) concentration may range from 2.0 to 4.0 g N/m3 with about 25-50% in the form of organic nitrogen (ON). In this study, current approaches to modeling organic N conversions (separate processes vs. constant contents of organic fractions) were compared. A new conceptual model of ON conversions was developed and combined...
-
Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use
PublicationThe main focus of this study is the emission of monoaromatic hydrocarbons because these are the preliminary factors of potential solvent and monomer residues present in single-use plastic barbecue and kitchen utensils comprising polystyrene, polypropylene, natural cellulose, and biodegradable polymers intended for use with hot meal or beverages. Herein, the emissions of monoaromatic hydrocarbons (styrene, benzene, toluene, ethylbenzene,...
-
Biocompatibility and Bioactivity of Load-Bearing Metallic Implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Insights into baby disposable diapers sustainable application
PublicationThe sustainable use of baby disposable diapers is one of the issues currently being discussed to reduce the undesirable impact on the environment and improve the public's understanding of the proper use of diapers. This issue is a step toward promoting a cleaner, greener, and waste-less environment. In this article, the authors discuss options for a viable future for both people and the planet. We believe that it inspire others...
-
A new method and equipment for the detection of presence and estimation of the content of the petroleum-based fraction in lubricating oils, especially those emitted to the atmosphere
PublicationLubricating oil, used in cutting equipment, works in the so-called open lubrication system and is entirely emitted to the environment. When such an oil contains even a small portion of the crude oil-derived fraction, which is still very common, the oil is a serious environmental pollution. In addition, the oil mist poses a serious threat to the health of employees. Current legal regulations require users of saws and harvesters...
-
Tensile and Fatigue Behavior of Additive Manufactured Polylactide
PublicationThis article presents the results of monotonic tensile and fatigue tests conducted on commercial polylactide or polylactic acid (PLA). The results of fatigue tests for this material present in the literature are limited, especially for additive manufactured elements. The specimens were manufactured using the injection molding and the fused filament fabrication (FFF) method. The FFF specimens were divided into five subgroups, depending...
-
The role of colloidal and particulate organic compounds in idenitrification and EBPR occurring in a full-scale activatedsludge system
PublicationThe aim of this study was to determine the immediate effects of slowly biodegradable substrates on the denitrification capability andphosphate release/uptake interactions for a full-scale biomass process from the ''Wschod'' wastewater treatment plant (WWTP) in Gdansk (Poland). Since it is hard to distinguish the slowlybiodegradable substrate in a direct way, a novel procedure based on batch experiments was developed and implemented....
-
Diethyl carbonate as a green extraction solvent for chlorophenol determination with dispersive liquid–liquid microextraction
PublicationThe principles of green analytical chemistry indicate that the search for greener organic solvents for extraction applications is crucial. In this study diethyl carbonate (DEC) is proved to be a green solvent, as it is relatively nontoxic, obtainable from renewable resources and biodegradable. Here it is applied as an extraction solvent for chlorophenol determination in water samples with dispersive liquid–liquid microextraction....
-
Influence of nitrogen and organic matter fractions on wastewater treatment in treatment wetland
PublicationMunicipal wastewater contains both biodegradable and non-degradable pollutants. Moreover, they are present in dissolved, colloidal and particulate forms. These fractions are characterised by various decomposition rates, hence their bioavailability during microbial respiration. It was confirm that biological degradation rate in terms of COD reduction is influenced by particle size speciation. Therefore, the objective of the study...
-
Deep Eutectic Solvents and Their Uses for Air Purification
PublicationChemical compounds released into the air by the activities of industrial plants and emitted from many other sources, including in households (paints, waxes, cosmetics, disinfectants, plastic (PVC) flooring), may affect the environment and human health. Thus, air purification is an important issue in the context of caring for the condition of the environment. Deep eutectic solvents (DESs) as liquids with environmentally friendly...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
Molecularly imprinted polymers based on deep eutectic solvents as a greenest materials for selective extraction of emerging contaminants from complex samples
PublicationSome of the reagents applied in the synthesis of molecularly imprinted polymers (MIPs) may impact on health and the environment. Thus, a new generation of promising green chemicals are nowadays introduced and investigated, including deep eutectic solvents (DESs). DESs seems to be a reasonable choice as they are characterized as non-toxic, low cost, easy to prepare and biodegradable chemicals. This review presents the information...
-
Evaluation and start-up of an electro-Fenton-sequencing batch reactor for dairy wastewater treatment
PublicationThis study examined the performance of an integrated wastewater (WW) treatment system, namely an electro-Fenton (EF)-sequencing batch reactor (SBR), for dairy industry WW. The EF process was used as the first stage of the SBR. It degrades bio-refractory compounds via advanced oxidation processes, thereby resulting in the formation of simple biodegradable intermediates. Several factors, including the hydraulic retention time (HRT),...
-
Structural changes of bacterial cellulose due to incubation in conditions simulating human plasma in the presence of selected pathogens
PublicationBacterial nanocellulose (BNC) is a natural biomaterial with a wide range of medical applications. However, it cannot be used as a biological implant of the circulatory system without checking whether it is biodegradable under human plasma conditions. This work aimed to investigate the BNC biodegradation by selected pathogens under conditions simulating human plasma. The BNC was incubated in simulated biological fluids with or...
-
Reclaimed Rubber/Poly(ε‐caprolactone) Blends: Structure, Mechanical, and Thermal Properties
PublicationThe amount of elastomeric waste, especially from tires is constantly increasing on a global scale. The recycling of these residua should be considered a priority. Compounding the waste rubbers with other polymers can be an excellent alternative to reuse waste materials. This procedure requires solving the issue of the lack of compatibility between the waste rubber particles and other polymers. Simultaneously, there is a claim for...
-
Alginate-based sorbents in miniaturized solid phase extraction techniques - Step towards greenness sample preparation
PublicationIn response to growing concerns about environmental degradation, one of the main areas of research activity in recent years has been to make sample preparation methods more sustainable and eco-friendly. The increasing greenness of this step can be achieved by minimizing the usage of reagents, automating individual stages, saving energy and time, and using non-toxic, biodegradable substances. Therefore, the use of natural materials...
-
Planetary roller extruders in the sustainable development of polymer blends and composites – Past, present and future
PublicationScrew extruders as continuous flow reactors allow the synthesis of new polymers, preparation of polymer blends and composites, and modification or functionalization of commercially available polymers. Literature data shows that the twin screw extrusion is the most popular solution used for this purpose. In contrast, the number of scientific papers on alternative methods, such as multi-screw extruders, is somewhat limited. This...
-
Modyfikacja cementu kostnego w celu uzyskania długotrwałej ochrony antybakteryjnej
PublicationNiniejsza rozprawa doktorska stanowi przewodnik po jednotematycznym cyklu publikacji, dotyczącym modyfikacji akrylowego cementu kostnego celem uzyskania długotrwałej i efektywnej ochrony antybakteryjnej. W ramach niego przeprowadzono badania eksperymentalne polegające na opracowaniu technologii wytwarzania modyfikowanego cementu kostnego oraz procedury medycznej jego stosowania. Cement kostny był modyfikowany przez zastosowanie...
-
Efficiency of pollutants removal from landfill leachates using Nb/BDD and Si/BDD anodic oxidation
PublicationLandfill leachates (LLs) is a complex, refectory and difficult to depurate liquid generated from sanitary landfills. It contains excessive levels of biodegradable and in particular non-biodegradable products (e.g. heavy metals, phenols, sulphide, plasticisers). LLs are among the effluents that may pose major environmental concerns, they can be a dangerous source of pollution e.g. due to infiltration into soil and underlying water....
-
Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers
PublicationHuge amount of keratinous waste, especially birds’ feathers, demands more value-added application instead of dumping. The present work reports the results of experiments aimed at preparing soluble keratin useful for novel bioproduct formation. The effect of thermo-chemical treatments with various reducing agents, i.e. 2-mercaptoethanol, dithiothreitol, sodium m-bisulphite, and sodium bisulphite, as well as sodium hydroxide, on...
-
In-Situ Processing of Biocomposites via Reactive Extrusion
PublicationLaw regulations, economic and environmental factors are the main causes for the rapidly growing interests in biocomposites’ research, conducted currently in a number of academic and industrial scientific centers. However, weak polymer matrix/filler interactions, common in biocomposites, result in unsatisfactory mechanical properties, which limit their practical applications. From many attempts performed to solve this problem, in-situ...
-
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
PublicationRecently, in the field of biomaterials, which are being designed for soft tissue scaffolding, is growing the interest of their modification with natural polymers. Synthetic polymers are often hard, not easy to process and they do not possess fine biodegradable profile. From the other hand natural polymers are biocompatible, but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties...
-
Bacterial consortium an axenic cultures isolated from activated sewage sludge for biodegradation of imidazolium-based ionic liquid
PublicationExtensive research and increasing number of potential industrial applications made ionic liquids (ILs) important materials in design of new, cleaner technologies. Together with the technological applicability, the environmental fate of these chemicals is considered and significant efforts are being made in designing strategies to mitigate their potential negative impacts. Many ILs are proven to be poorly biodegradable and relatively...
-
Influence of silver nanoparticles addition on antibacterial properties of PEO coatings formed on magnesium
PublicationMagnesium is a biodegradable material and thus could be a choice for bone fixation devices and implants with a specific purpose. This study aims to enhance the anti-corrosive, biocompatible, and antibacterial properties on magnesium-based materials through ceramic coatings formation. To achieve this the silicate-based electrolyte was used to create of Plasma Electrolytic Oxidation (PEO) coatings. During investigation the bioactive...
-
Digestate Quality Originating from Kitchen Waste
PublicationThis paper examines the influence of biomass directed to anaerobic digestion on the quality of digestate, specifically focusing on the presence of undesirable substances, such as plastics, including biodegradable ones. It analyses the susceptibility of selected bioplastics to degradation and addresses the problem of reliable identification of microplastics in both feedstock—directed to anaerobic digestion—and produced digestate....
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
End-of-life management of single-use baby diapers: Analysis of technical, health and environment aspects
PublicationSingle-use baby diapers belongs to an important group of products used in the parenting journey because of their high performance and convenience. Single-use baby diapers are normally thrown away after one-time use, resulting in a waste management problem. The goal of this paper was to better understand main environmental concerns of different types of diapers and address how to reduce them, with a special consideration of waste...
-
A review: Fabrication of porous polyurethane scaffolds
PublicationThe aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical...
-
Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems
Publicationhe aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and “ordinary” heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublicationBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
Maillard-reaction (glycation) of biopolymeric packaging films; principles, mechanisms, food applications
PublicationBackground The biodegradable, biocompatible, sustainable, and renewable nature of biomaterials has led to increased interest in developing biopolymeric food packaging films (BFPFs) with green ingredients and strategies. To enhance the performance of these films, biopolymer molecules can be modified or combined with additives like nanomaterials, cross-linkers, bioactive compounds, and other polymers, particularly with Maillard-reaction...
-
More than just a beer—the potential applications of by-products from beer manufacturing in polymer technology
PublicationBeer is the most popular alcoholic beverage in the world, and its popularity is continuously growing. Currently, global beer production is estimated at around 2 billion hectoliters. Nevertheless, the increasing production capacity implicates the rising issue of generated by-products—brewers’ spent grain, spent hops, spent yeast, and wastewater. They are generated in massive amounts, so having in mind the current pro-ecological...
-
Treatment innovation using solar/UV In book: The Treatment of Pharmaceutical Wastewater: Innovative Technologies and the Adaptation of Treatment Systems
PublicationSince ancient times, sunlight irradiation has been widely used for water purification. Apart from solar water disinfection techniques, UV irradiation is of particular interest when considering the photodegradation of various classes of emerging pollutants. Pharmaceutically active compounds are one of the largest classes of micropollutants. The main sources of these contaminants in wastewater and aqueous environments are households,...
-
Valorization of Bioplastic Waste: A Review on Effective Recycling Routes for the Most Widely Used Biopolymers
PublicationPlastics-based materials have a high carbon footprint, and their disposal is a considerable problem for the environment. Biodegradable bioplastics represent an alternative on which most countries have focused their attention to replace of conventional plastics in various sectors, among which food packaging is the most significant one. The evaluation of the optimal end-of-life process for bioplastic waste is of great importance...