Filters
total: 276
filtered: 245
Chosen catalog filters
Search results for: BENDING TEST
-
Fatigue Bending of V-Notched Cold-Sprayed FeCoCrNiMn Coatings
PublicationCold-spray coatings were produced by FeCoCrNiMn high-entropy alloy powders deposited on carbon steel substrate. The coatings were realized at intermediate temperature and high pressure (at 1100 °C and 7 MPa). The coating microstructure was characterized by scanning electron microscopy and X-ray diffraction, revealing a very dense deposition and high flattening ratio of the splatted particles. This had a large influence on the...
-
Simulations of Shear Zones and Cracks in Engineering Materials Using eXtended Finite Element Method
PublicationNumerical simulations of cracks and shear zones in quasi-brittle materials are presented. Extended Finite Element Method is used to describe both cracks and shear zones. In a description of tensile cracks, a Rankine criterion is assumed. A discrete Mohr-Coulomb law is adopted for simulations of shear zones. Results of simple numerical tests: unixial tension, bending and biaxial compression are demonstrated.
-
Experimental Investigations of Fracture Process Using DIC in Plain and Reinforced Concrete Beams under Bending
PublicationThe fracture behaviour of concrete and reinforced concrete beams under quasi-static three-point bending was comprehensively investigated with experiments at laboratory scale. The eight various concrete mixes were tested. The influence of the shape, volume and size of aggregate particles and reinforcement on concrete fracture under bending was studied. Displacements on the surface of concrete beams were measured by means of the...
-
A Diagnostic Method Based on Deflection Analysis for Monitoring Post-elastic Response of Beams
PublicationA non-destructive diagnostic method based on deflection analysis for monitoring the post-elastic response of beams was developed, and a diagnostic indicator was proposed. The indicator was defined as the second moment of the normalised curvature function about the mid-span, where the curvature was computed from the normalised deflection function. Elastic reference values of the indicator were computed for simply supported beams...
-
The vibration-based assessment of the influence of elevated temperature on the condition of concrete beams with pultruded GFRP reinforcement
PublicationConcrete beams reinforced with glass fiber reinforced polymer (GFRP) bars subjected to elevated temperature have been experimentally studied. The influence of high temperatures on GFRP-reinforced concrete beams condition has been check both, destructively and nondestructively. The nondestructive tests foresaw vibration-based tests to obtain the natural frequency values after exposure to varying temperatures. The vibration-based...
-
A new prototype of piezoelectric bending resonant transducer for analysis of soft tissues properties
PublicationThis paper is devoted to a new piezoelectric bending resonant transducer prototype dedicated to the characterization of the mechanical properties of soft tissue. A general description of the actuator’s structure is presented including the basic principles of the measurement. The chosen geometry of the prototype is discussed and compared with the existing version. Constitutive equations are presented for the active and passive layer...
-
Effect of elliptical defect orientation on the durability of specimens subjected to cyclic bending
PublicationThis work presents the effect of elliptical defects orientation on the durability of specimens made of C45 steel. Three kinds of specimens with elliptical defects in the form of a one-sided notch oriented at different angles 45, 60, and 90 degrees were subjected to cyclic bending (R=-1). The stress state analysis was performed using local and non-local methods to determine an equivalent amplitude of stress, and then the results...
-
Effect of bending-torsion on fracture and fatigue life for 18Ni300 steel specimens produced by SLM
PublicationIn this study, different fracture surfaces caused by fatigue failure were generated from 18Ni300 steel produced by selective laser melting (SLM). Hollow round bars with a transverse hole were tested under bending-torsion to investigate the crack initiation mechanisms and fatigue life. Next, the post-failure fracture surfaces were examined by optical profilometer and scanning electron microscope. The focus is placed on the relationship...
-
Response to David Steigmann’s discussion of our paper
PublicationWe respond to David Steigmann's discussion of our paper "A general theory for anisotropic Kirchhoff-Love shells with in-plane bending of embedded fibers, Math. Mech. Solids, 28(5):1274-1317" (arXiv:2101.03122). His discussion allows us to clarify two misleading statements in our original paper, and confirm that its formulation is fully consistent with the formulation of Steigmann. We also demonstrate that some of our original statements...
-
Local buckling and initial post-buckling behaviour of channel member flange - analytical approach
PublicationThe local buckling and initial post-buckling behaviour of the cold-formed channel member flange is investigated. The governing nonlinear differential equation for axially compressed columns and beams undergoing pure bending is derived using the stationary total potential energy principle. The critical stress and initial post-buckling equilibrium path is determined by means of a perturbation approach. The results obtained allow...
-
The change of mechanical properties of selected wood species after drying process under various conditions
PublicationThe result of mechanical properties change of selected wood species after drying process under various parameters are presented. The global elasticity modulus and bending strength for steam dried, air-steam mixture dried and air dried samples as reference were measured. It allowed to reveal the effect of wood stream, air-steam mixture and their temperature on mechanical properties of wood. It has been recognized that steam and...
-
Innovative Cold-formed GEB Section under Bending
PublicationThis paper is concerned with the numerical bending capacity study of the innovative cold-formed GEB sections. Both linear buckling analysis and non-linear static analysis incorporating geometric and material nonlinearity were carried out employing a shell structural model. The magnitudes of buckling load and limit load with respect to GEB section depth and thickness were obtained. The opened cold-formed section was tested assuming...
-
Mechanical and structural investigations of wings of selected insect species
PublicationThis paper presents research and measurements leading to obtaining the Young’s modulus of wing bearing structures of selected insect species. A small testing machine intended for three-point bending and equipped with instruments registering low forces was constructed for the needs of the experiment. The machine was used to perform numerous bending tests of wings of three species of insects (obtained from a breeding farm): Attacus...
-
Fracture Surface Behavior of 34CrNiMo6 High-Strength Steel Bars with Blind Holes under Bending-Torsion Fatigue
PublicationThe present study evaluates the fracture surface response of fatigued 34CrNiMo6 steel bars with transverse blind holes subjected to bending with torsion loading. The analysis of the geometric product specification was performed by means of height parameters Sx, functional volume parameters Vx, and fractal dimension Df. Surface topography measurements were carried out using an optical profilometer with focus variation technology....
-
Experimental and numerical study on stability loss of innovative geometry steel girder
PublicationThis paper presents the experimental and numerical analysis of an innovative plate girder geometry with variable web thicknesses. An idea proposed in this research is to increase the stability of the girder web by increasing its thickness in the compressed zone. This solution can replace commonly used longitudinal stiffeners which are designed to prevent web local loss of stability. Moreover, such an innovative approach requires...
-
Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis
PublicationFirst metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors’ previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus...
-
The modyfication of the dynamic characteristics of vibratory conveyor
PublicationThe vibratory conveyors are used in the industry for continuous transportation of loose substances on distance up to 20meters. These conveyors are often suspended on expensive and massive frames, which are softly vibroisolated from the ground. As a result, they transfer significant dynamic forces on the ground. In case of 5 - 20 meter-long devices, the biggest construction problems are proper vibrations of the panel caused by bilateral...
-
FEM simulation of laminate failure in the three point bending
PublicationThe paper presents a FEM simulation of failure of laminate subjected to the three point bending. The numeri-cal model is based on the equivalent single layer approach with 6-paramater non-linear shell theory kinematics. It is implemented in the non-commercial FEM code. The failure initiation is detected with the use of Tsai-Wu criterion. After the failure onset the progressive failure process is modelled through the appropriate...
-
Numerical investigations on early indicators of fracture in concrete at meso-scale.
PublicationFracture is a major reason of the global failure of concretes. The understanding of fracture is important to ensure the safety of structures and to optimize the material behaviour. In particular an early prediction possibility of fracture in concretes is of major importance. In this paper, concrete fracture under bending was numerically analysed using the Discrete Element Method (DEM). The real mesoscopic structure of a concrete...
-
Modelowanie kratownicy z kształtowników giętych na zimno z mimośrodami dodatnimi w węźle = Modelling of truss with cold-formed section and positive eccentricyty in the node.
PublicationThe topic of this research is establishing load-carrying capacity of compressed and tensed chords of trusses made of cold-formed open cross-sections. Occurrence of bending in the truss’ chord is the result of specific production technology assumed by the designer and producer of lattice girder’s systems. The aim of this research is to present methodology of conduct while creating numerical models that best depict the behaviour...
-
Modeling of truss with cold-formed section and positive eccentricity in the node
PublicationThis work is dedicated to establishing the load carrying capacity of tensed and compressed truss’ nodes made of cold-formed open cross sections. The occurrence of bending in the truss’ nodes is the result of a specific production technology for system lattice girders assumed by the designer and the producer. The aim of this research is to present the methodology of conduct for creation of computational models that best depict the...
-
On the durability of the hydraulic satellite motor working mechanism in overload condition
PublicationThe paper presents the newest construction of the hydraulic satellite pump/motor. In this study, the fracture of the hydraulic satellite motor working mechanism is investigated. Factors influencing the durability of satellite working mechanism have been described. The durability of the hydraulic satellite motor working mechanism at a load, corresponding to a pressure of 15 MPa supplied with refined rapeseed oil is very low. Analyses...
-
Detection of debonding in reinforced concrete beams using ultrasonic transmission tomography and hybrid ray tracing technique
PublicationThis paper concerns inspection of reinforced concrete elements, with particular emphasis on assessing the quality of the adhesive connection between steel and concrete. A novel theoretical model was developed to determine the paths of transmitted, refracted and reflected elastic waves as well as a creeping wave propagated along the inclusion surface. Imaging the internal structure of tested beams was based on wave propagation measurements...
-
The correlation of fractal dimension to fracture surface slope for fatigue crack initiation analysis under bending-torsion loading in high-strength steels
PublicationIn this study, the fractal dimension of fatigue fracture surfaces is investigated in order to find an alternative failure loading indicator. Some of many metrological factors are generalized by reducing the fracture surface structure to one factor and develop an entire fracture surface procedure by analyzing the impact of surface slope and calculation resolution. Three notched geometries are studied under cyclic bending-torsion:...
-
Stability and limit load analysis of a cold-formed channel section column
PublicationThe paper presents stability and limit load analysis of a steel column 1440 mm high of a cold-formed channel section, subjected to a combination of compression and bending. Experimental results were compared to the resistance of a code procedure and to the outcome of numerical non-linear analysis. Comparison was made of numerical solutions by means of static (Riks) and dynamic (Explicit and Implicit) methods. Perfectly elastic...
-
Ultrasound monitoring for evaluation of damage in reinforced concrete
PublicationThe paper deals with automated monitoring of damage evolution in concrete elements subjected to three-point bending tests. The monitoring is based on the nonlinear interactions of traveling ultrasonic waves with micro-crack zones inside the concrete specimens and surface-breaking cracks. The developed procedure assumes semi-continuous ultrasonic testing during the element full loading cycle and generation of the power spectral...
-
On Anti-Plane Surface Waves Considering Highly Anisotropic Surface Elasticity Constitutive Relations
PublicationWithin the framework of highly anisotropic surface elasticity model we discuss the propagation of new type of surface waves that are anti-plane surface waves. By the highly anisotropic surface elasticity model we mean the model with a surface strain energy density which depends on incomplete set of second derivatives of displacements. From the physical point of view this model corresponds to a coating made of a family of parallel...
-
On phase equilibrium of an elastic liquid shell with wedge disclination
PublicationBased on the six-parameter shell theory we consider the phase equilibrium of a two-phase liquid membrane containing a wedge disclination. The considered problems are related to modelling of phase transitions in biological or lipid membranes. In order to capture the membrane behaviour we consider a special case of elastic shells which energy is invariant under major transformations of a reference configuration and can be treated...
-
Mechanical compatibility of implants used in hernia repair with abdominal wall
PublicationThe paper deals with a membrane model of a synthetic surgical mesh for treatment of abdominal hernia. The authors analyse the compatibility of two implant types with the human wall: Dualmesh Gore and Proceed. The finite element method is applied to simulate tjhe behavior of the proposed model. Due fact that recurrences are usually caused by connection failure, this study is focused on reaction forces in supports representing the...
-
Failure characterisation of sandwich beams using integrated acoustic emission and digital image correlation techniques
PublicationThe paper presents the experimental study of the failure behaviour of sandwich beams subjected to bending. The samples examined are sandwich beams made of polyethylene terephthalate foam core and glass fibre-reinforced polymer laminate face sheets. In a series of experiments, it has been proposed to integrate diagnostic techniques with acoustic emission and digital image correlation to accurately track the cracking process on the...
-
A comprehensive study on nonlinear hygro-thermo-mechanical analysis of thick functionally graded porous rotating disk based on two quasi three-dimensional theories
PublicationIn this paper, a highly efficient quasi three-dimensional theory has been used to study the nonlinear hygro-thermo-mechanical bending analysis of very thick functionally graded material (FGM) rotating disk in hygro-thermal environment considering the porosity as a structural defect. Two applied quasi three-dimensional displacement fields are assumed in which the strain along the thickness is not zero unlike most of the other plate...
-
Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading
PublicationThis paper studies the fatigue crack initiation and fatigue crack propagation of notched cylindrical bars made of 7050-T6 aluminium alloy subjected to multiaxial bending-torsion loading. The sites of crack initiation and the angles of crack initiation were successfully predicted from the distribution of the first principal stress at the notch surface. Fatigue crack initiation lives were computed through the new concept of energy...
-
SIMULATIONS OF FRACTURE IN CONCRETE BEAMS UNDER BENDING USING A CONTINUUM AND DISCRETE APPROACH
PublicationThe paper describes two-dimensional meso-scale results of fracture in notched concrete beams under bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and air voids. Within continuum mechanics, the simulations were carried out with the finite element method based on a isotropic damage constitutive model enhanced by a characteristic...
-
FE analysis of a coupled energetic-statistical size effect in plain concrete beams with varying material properties.
PublicationThe numerical FE investigations of a coupled energetic-statistical size effect in unnotched concrete beams of similar geometry under quasi-static three point bending were performed within elasto-plasticity with non-local softening. The stochastic FE analyses were carried out with three different beam sizes. Deterministic calculations were performed with the uniform distribution of a uniaxial tensile strength. In statistical calculations...
-
Exploring the interfacial effects at the ETL/perovskite boundary in the semitransparent perovskite solar cells
PublicationThe recent focus has been made on the perovskite solar cells (PSCs) with an inverted configuration, where substantial improvements have been already achieved. However, the p–i–n structure needs a buffer layer for most of the configurations to modify the work-function of a deposited electrode. Additionally and very importantly, such a layer can also serve as a protective film that improves a stability of solar cells. Here, we study...
-
REINFORCED CONCRETE SUPPORTING CONSTRUCTION OF THE STADIUM COVER FOR EURO 2012 IN GDAŃSK
PublicationIn the article structural issues that connected with the reinforced concrete supporting construction of the stadium roofing for EURO 2012 in Gdańsk were described. In the first part of the article the concept of stadium foundation were described. In the second the static - strength analysis for two variants fastening together individual foundation elements were made. The two assumed geometrically different concept of foundation...
-
Buckling and initial post-local buckling behaviour of cold-formed channel member flange
PublicationThe initial post-buckling behaviour of a cold-formed channel member flange after its local buckling is investigated. An axially compressed column or beam subjected to pure bending is considered. The member material is assumed to follow a linear stress-strain relationship. The governing non-linear differential equation of the problem is derived using the minimum total potential energy principle. An approximate solution for the equation...
-
Prosthetic Elements Made of the Ti-13Zr-13Nb Alloy by Selective Laser Melting
PublicationThe fabrication of the prosthetic foundations and bridges from the Ti-13Zr-13Nb alloy is described. The process was started from CAD/CAM design of 3D models of the foundations based on scanning of patient`s mouth. Next, 3D models were transformed into *.stl files for the manufacturing stage and then the manufacturing process by means of the selective laser melting with the SLM Realizer 100 equipment was made. The intrinsic structure...
-
Local buckling of compressed flange of cold-formed channel members made of aluminum alloy
PublicationThe paper deals with local buckling of a compressed single flange of thin-walled channel cold- formed columns and beams made of aluminum alloy. Material is described by means of the Ramberg-Osgood constitutive equation. Axial compression of the columns and beams undergoing bending is taken into consid- eration. A simple model of the member flange in the form a long beam elastically connected to the web is used to find the critical...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublicationIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
Isogeometric Shell FE Analysis of the Human Abdominal Wall
PublicationIn this paper a nonlinear isogeometric Kirchhoff-Love shell model of the human abdominal wall is proposed. Its geometry is based on in vivo measurements obtained from a polygon mesh that is transformed into a NURBS surface, and then used directly for the finite element analysis. The passive response of the abdominal wall model under uniform pressure is considered. A hyperelastic membrane model based on the Gasser-Ogden-Holzapfel...
-
Three-Dimensional Fractography for Conventional and Additive Manufactured Steels After Bending-Torsion Fatigue
PublicationIn this study, fracture surface topography parameters were measured to investigate the effects of multiaxial loading. In order to assess the metrological aspects of fracture for notched specimens made of high-strength steels processed by both conventional and additively manufacturing (AM) techniques, an optical surface profilometer was used. Three bending moment to torsion moment ratios (B/T) were studied, i.e. 2, 1 and 2/3. The...
-
Influence of steel brackets supporting crane runway girders structure on the stress distribution in the brackets
PublicationThe paper presents a numerical analysis of steel brackets supporting a double-span crane runway girders. The purpose of the study was to assess the new structural solution based on the stress distribution in the brackets. In order to simplify the connection, the bottom flange of the crane runway girder is based directly on the upper flange of the bracket. As a result, the support reaction is no longer applied in the plane of the...
-
MODELLING OF CONCRETE FRACTURE AT AGGREGATE LEVEL USING DEM BASED ON X-RAY mu CT IMAGES OF INTERNAL STRUCTURE
PublicationThe paper describes two-dimensional meso-scale numerical results of fracture in notched concrete beams under quasi-static three-point bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones (ITZs) and air voids. As a numerical approach, the discrete element method (DEM) was used. The concrete micro-structure in calculations was directly...
-
Hybrid model of geared rotor system
PublicationIn the paper a hybrid model of a geared multirotor system has been developed. The model is obtained by application of both the modal decomposition methodology and the spatial discretization method. Reduced modal model was constructed for the system without gyroscopic and damping effects. The gyroscopic interaction, damping and other phenomena which are difficult to include in the modal approach were modeled by application of simply...
-
Using concentrated spectrogram for analysis of audio acoustic signals
PublicationThe paper presents results of time-frequency analysis of audio acoustic signals using the method of Concentrated Spectrograph also known as ''Cross-spectral method'' or ''Reassignment method''. Presented algorithm involves signal's local group delay and channelized instantaneous frequency to relevantly redistribute all Short-time Fourier transform lines in time-frequency plain. The main intention of the paper is to compare various...
-
On the peculiarities of anti-plane surface waves propagation for media with microstructured coating
PublicationWe discuss new type of surface waves which exist in elastic media with surface energy. Here we present the model of a coating made of polymeric brush. From the physical point of view the considered model of surface elasticity describes a highly anisotropic surface coating. Here the surface energy model could be treated as 2D reduced strain gradient continuum as surface strain energy depends on few second spatial derivatives of...
-
Investigations on fracture in reinforced concrete beams in 3-point bending using continuous micro-CT scanning
PublicationThis study explores a fracture process in rectangular reinforced concrete (RC) beams subjected to quasi-static three-point bending. RC beams were short and long with included longitudinal reinforcement in the form of a steel or basalt bar. The ratio of the shear span to the effective depth was 1.5 and 0.75. The focus was on the load–deflection diagram and crack formation. Three-dimensional (3D) analyses of the size and distribution...
-
Experimental and numerical evaluation of mechanical behaviour of composite structural insulated panels
PublicationComposite structural insulated panels (CSIPs) are novel prefabricated elements for structural applications. Panels under consideration are made from glass-fibre reinforced magnesia cement boards as facesheets and expanded polystyrene foam (EPS) as a core. Quasi-static full-scale and model bending tests under monotonic loading were performed to recognize mechanical properties of CSIPs in flexure. In addition, tensile, compressive,...
-
Experimental and numerical studies on the mechanical response of a piezoelectric nanocomposite-based functionally graded materials
PublicationThis work presents an experimental study of piezoelectric structures reinforced by graphene platelets, based on the concept of the functionally graded materials (FGMs). The assumed model is a rectangular beam/plate and the composition is due to the Halpin-Tsai rule. The model is also simulated in the Abaqus software which is the first time that such a structure has been modelled in an FEM package. In addition, a mathematical model...