Filters
total: 1529
displaying 1000 best results Help
Search results for: ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, CNN, NEURAL NETWORKS, OPTIMIZATION ALGORITHMS
-
Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings
PublicationThe paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublicationObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Equal Baseline Camera Array—Calibration, Testbed and Applications
PublicationThis paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publication -
Instance segmentation of stack composed of unknown objects
PublicationThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Orientation-aware ship detection via a rotation feature decoupling supported deep learning approach
PublicationShip imaging position plays an important role in visual navigation, and thus significant focuses have been paid to accurately extract ship imaging positions in maritime videos. Previous studies are mainly conducted in the horizontal ship detection manner from maritime image sequences. This can lead to unsatisfied ship detection performance due to that some background pixels maybe wrongly identified as ship contours. To address...
-
Interpretation and modeling of emotions in the management of autonomous robots using a control paradigm based on a scheduling variable
PublicationThe paper presents a technical introduction to psychological theories of emotions. It highlights a usable ideaimplemented in a number of recently developed computational systems of emotions, and the hypothesis thatemotion can play the role of a scheduling variable in controlling autonomous robots. In the main part ofthis study, we outline our own computational system of emotion – xEmotion – designed as a key structuralelement in...
-
An agent-based framework for distributed learning
Publication -
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublicationAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders
Publicationis evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...
-
The Double Cognitive Bias of Mistakes: A Measurement Method
PublicationThere is no learning without mistakes. However, making mistakes among knowledge workers is s�ll seeing shameful. There is a clash between posi�ve a�tudes and beliefs regarding the power of gaining new (tacit) knowledge by ac�ng in new contexts and nega�ve a�tudes and beliefs toward accompanying mistakes that are sources of learning. These contradictory a�tudes create a bias that is doubled by the other shared solid belief...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Identification of High-Value Dataset determinants: is there a silver bullet for efficient sustainability-oriented data-driven development?
PublicationOpen Government Data (OGD) are seen as one of the trends that has the potential to benefit the economy, improve the quality, efficiency, and transparency of public administration, and change the lives of citizens, and the society as a whole facilitating efficient sustainability-oriented data-driven services. However, the quick achievement of these benefits is closely related to the “value” of the OGD, i.e., how useful, and reusable...
-
The KLC Cultures, Tacit Knowledge, and Trust Contribution to Organizational Intelligence Activation
PublicationIn this paper, the authors address a new approach to three organizational, functional cultures: knowledge culture, learning culture, and collaboration culture, named together the KLC cultures. Authors claim that the KLC approach in knowledge-driven organizations must be designed and nourished to leverage knowledge and intellectual capital. It is suggested that they are necessary for simultaneous implementation because no one of...
-
A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
PublicationIn this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...
-
Global Surrogate Modeling by Neural Network-Based Model Uncertainty
PublicationThis work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Szkoła letnia na WETI
EventsKatedra Algorytmów i Modelowania Systemów WETI organizuje szkołę letnią pt.: "Gdansk Summer School of Advanced Science on Algorithms for Discrete Optimization" dla osób zainteresowanych algorytmiką i teorią grafów.
-
Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks
PublicationOne of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...
-
Human-Computer Interface Based on Visual Lip Movement and Gesture Recognition
PublicationThe multimodal human-computer interface (HCI) called LipMouse is presented, allowing a user to work on a computer using movements and gestures made with his/her mouth only. Algorithms for lip movement tracking and lip gesture recognition are presented in details. User face images are captured with a standard webcam. Face detection is based on a cascade of boosted classifiers using Haar-like features. A mouth region is located in...
-
Radar and Sonar Imaging and Processing
PublicationThe 21 papers (from 61 submitted) published in the Special Issue “Radar and Sonar Imaging Processing” highlighted a variety of topics related to remote sensing with radar and sonar sensors. The sequence of articles included in the SI dealt with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used.
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Compact global association based adaptive routing framework for personnel behavior understanding
PublicationPersonnel behavior understanding under complex scenarios is a challenging task for computer vision. This paper proposes a novel Compact model, which we refer to as CGARPN that incorporates with Global Association relevance and Adaptive Routing Pose estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature representation by compressing the kernel parameter space compared with typical algorithms,...
-
International Conference on Hybrid Artificial Intelligence Systems
Conferences -
Pacific Rim International Conference on Artificial Intelligence
Conferences -
National Conference of the American Association for Artificial Intelligence
Conferences -
International Conference on Artificial Intelligence and Soft Computing
Conferences -
International Conference on Distributed Computing and Artificial Intelligence
Conferences -
Australian Conference on Artificial Life and Computational Intelligence
Conferences -
International Conference on Artificial Intelligence in Science and Technology
Conferences -
International Conference on Modelling Decisions for Artificial Intelligence
Conferences -
Florida Artificial Intelligence Research Society Conference
Conferences -
International Conference on Artificial Intelligence and Pattern Recognition
Conferences -
Better polynomial algorithms for scheduling unit-length jobs with bipartite incompatibility graphs on uniform machines
PublicationThe goal of this paper is to explore and to provide tools for the investigation of the problems of unit-length scheduling of incompatible jobs on uniform machines. We present two new algorithms that are a significant improvement over the known algorithms. The first one is Algorithm 2 which is 2-approximate for the problem Qm|p j = 1, G = bisubquartic|Cmax . The second one is Algorithm 3 which is 4-approximate for the problem Qm|p...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.
PublicationIn the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...
-
Comparable analysis of PID controller settings in order to ensure reliable operation of active foil bearings
PublicationIn comparison to the traditional solutions, active bearings offer great operating flexibility, ensure better operating conditions over a wider range of rotational speeds and are safe to use. In order to ensure optimum bearing performance a bearing control system is used that adapts different geometries during device operation. The selection of optimal controller parameters requires the use of modern optimization methods that make...
-
Towards neural knowledge DNA
PublicationIn this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...
-
International Symposium on Modelling and Optimization in Mobile, Ad Hoc, and Wireless Networks
Conferences -
Computing methods for fast and precise body surface area estimation of selected body parts
PublicationCurrently used body surface area (BSA) formulas give satisfactory results only for individuals with typical physique, while for elderly, obese or anorectic people accurate results cannot be expected. Particularly noteworthy are the results for individuals with severe obesity (body-mass index greater than 35 kg/m2), for which BSA estimation errors reached 80%. The main goal of our study is the development of precise BSA models for...
-
Study of Statistical Text Representation Methods for Performance Improvement of a Hierarchical Attention Network
PublicationTo effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches...
-
Direct brain stimulation modulates encoding states and memory performance in humans
PublicationPeople often forget information because they fail to effectively encode it. Here, we test the hypothesis that targeted electrical stimulation can modulate neural encoding states and subsequent memory outcomes. Using recordings from neurosurgical epilepsy patients with intracranially implanted electrodes, we trained multivariate classifiers to discriminate spectral activity during learning that predicted remembering from forgetting,...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublicationMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Radar and Sonar Imaging and Processing (2nd Edition)
PublicationThe 14 papers (from 29 submitted) published in the Special Issue “Radar and Sonar Imaging Processing (2nd Edition)” highlight a variety of topics related to remote sensing with radar and sonar sensors. The sequence of articles included in the SI deal with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends, in which the latest developments in science, including artificial intelligence,...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublicationDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
Path-based methods on categorical structures for conceptual representation of wikipedia articles
PublicationMachine learning algorithms applied to text categorization mostly employ the Bag of Words (BoW) representation to describe the content of the documents. This method has been successfully used in many applications, but it is known to have several limitations. One way of improving text representation is usage of Wikipedia as the lexical knowledge base – an approach that has already shown promising results in many research studies....
-
Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks
Conferences -
Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals
PublicationIt is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...
-
Application of Intuitionistic Fuzzy Sets to the assessment of technical university students
PublicationThe article proposes application of artificial intelligence methods to assess students of technical universities. The level of achieved educational goals can be assessed using measurements based on the idea of Fuzzy Intuitionistic Sets (IFS). A classification algorithm was developed and an exemplary distribution of the criteria values using IFS was presented. The application of the proposed approach in online education can enrich...
-
Variable-fidelity shape optimization of dual-rotor wind turbines
PublicationPurpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model...