Filters
total: 2323
displaying 1000 best results Help
Search results for: MULTI-LABEL CLASSIFICATION
-
Support Vector Machine Applied to Road Traffic Event Classification
PublicationThe aim of this paper is to present results of road traffic event signal recognition. First, several types of systems for road traffic monitoring, including Intelligent Transport System (ITS) are shortly described. Then, assumptions of creating a database of vehicle signals recorded in different weather and road conditions are outlined. Registered signals were edited as single vehicle pass by. Using the Matlab-based application...
-
Vident-lab: a dataset for multi-task video processing of phantom dental scenes
Open Research DataWe introduce a new, asymmetrically annotated dataset of natural teeth in phantom scenes for multi-task video processing: restoration, teeth segmentation, and inter-frame homography estimation. Pairs of frames were acquired with a beam splitter. The dataset constitutes a low-quality frame, its high-quality counterpart, a teeth segmentation mask, and...
-
Development of an AI-based audiogram classification method for patient referral
PublicationHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations
PublicationThe research presents the methodology of improving the accuracy in sentiment classification in the light of modelling the latent semantic relations (LSR). The objective of this methodology is to find ways of eliminating the limitations of the discriminant and probabilistic methods for LSR revealing and customizing the sentiment classification process (SCP) to the more accurate recognition of text tonality. This objective was achieved...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Comparison of Methods for Real and Imaginary Motion Classification from EEG Signals
PublicationA method for feature extraction and results of classification of EEG signals obtained from performed and imagined motion are presented. A set of 615 features was obtained to serve for the recognition of type and laterality of motion using 8 different classifications approaches. A comparison of achieved classifiers accuracy is presented in the paper, and then conclusions and discussion are provided. Among applied algorithms the...
-
Traffic Noise Analysis Applied to Automatic Vehicle Counting and Classification
PublicationProblems related to determining traffic noise characteristics are discussed in the context of automatic dynamic noise analysis based on noise level measurements and traffic prediction models. The obtained analytical results provide the second goal of the study, namely automatic vehicle counting and classification. Several traffic prediction models are presented and compared to the results of in-situ noise level measurements. Synchronized...
-
An Overview of the Development of a Real-Time System for Endoscopic Video Classification
PublicationThe article presents the results of improving endoscopic image classification algorithms in an effort towards applying them in a real-time diagnosis supporting system. Methods for the detection and removal of personal data are presented and discussed. The currently developed recognition algorithms have been improved in terms of accuracy and performance to make them suitable for a real-life implementation. Their test results are...
-
Multi-task Video Enhancement for Dental Interventions
PublicationA microcamera firmly attached to a dental handpiece allows dentists to continuously monitor the progress of conservative dental procedures. Video enhancement in video-assisted dental interventions alleviates low-light, noise, blur, and camera handshakes that collectively degrade visual comfort. To this end, we introduce a novel deep network for multi-task video enhancement that enables macro-visualization of dental scenes. In particular,...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublicationThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublicationThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublicationThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Multi-DBD actuator with floating interelectrode for aerodynamic control
PublicationIn this paper the use of a floating inter-electrode in a multi-DBD (dielectric barrier discharge) plasma actuator is described. The multi-DBD plasma actuators with floating inter-electrodes were investigated to get a longer DBD on a dielectric surface and to maximise generated net airflow. Our actuator was used to control the boundary layer flow separation around NACA0012 airfoil model. The results of our investigations suggests...
-
Classification of submandibular salivary stones based on ultrastructural studies
PublicationIntroduction: Sialolithiasis remains a clinical problem with unclear etiopathogenesis, lack of prevention methods, and only surgical treatment. Materials and methods: An ultrastructure examination of submandibular sialoliths obtained from patients with chronic sialolithiasis was conducted using a scanning electron microscope and X‐ray photoelectron spectroscopy. Results: Based on the results, we divided sialoliths into three types:...
-
Shared multi-processor scheduling
PublicationWe study shared multi-processor scheduling problem where each job can be executed on its private processor and simultaneously on one of many processors shared by all jobs in order to reduce the job’s completion time due to processing time overlap. The total weighted overlap of all jobs is to be maximized. The problem models subcontracting scheduling in supply chains and divisible load scheduling in computing. We show that synchronized...
-
The OptD-multi method in LiDAR processing
PublicationNew and constantly developing technology for acquiring spatial data, such as LiDAR (light detection and ranging), is a source for large volume of data. However, such amount of data is not always needed for developing the most popular LiDAR products: digital terrain model (DTM) or digital surface model. Therefore, in many cases, the number of contained points are reduced in the pre-processing stage. The degree of reduction is determined...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublicationThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Multi-Stage Video Analysis Framework
PublicationThe chapter is organized as follows. Section 2 presents the general structure of the proposed framework and a method of data exchange between system elements. Section 3 is describing the low-level analysis modules for detection and tracking of moving objects. In Section 4 we present the object classification module. Sections 5 and 6 describe specialized modules for detection and recognition of faces and license plates, respectively....
-
Classification of submandibular salivary stones based on ultrastructural studies
PublicationIntroduction: Sialolithiasis remains a clinical problem with unclear etiopathogenesis, lack of prevention methods, and only surgical treatment. Materials and methods: An ultrastructure examination of submandibular sialoliths obtained from patients with chronic sialolithiasis was conducted using a scanning electron microscope and X-ray photoelectron...
-
AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS
Journals -
Journal of Multi-Criteria Decision Analysis
Journals -
Electronic noses in classification and quality control of edible oils: A review
PublicationThe growing demand for wholesome and nutritious food leads to intensification of production, which in turn can have a detrimental effect on quality and well-being of consumers. For that reason, it is important to develop novel methods of food control which would be characterized by a short time of analysis, adequate sensitivity and relatively low cost. One such technique involves the use of multi-sensory devices called electronic...
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublicationA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublicationPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Piroxicam derivatives THz classification
Publication -
Classification Research On Intraoperative Neuromonitoring
Publication -
A Framework for Adaptive and Integrated Classification
Publication -
Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review
PublicationIn this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions...
-
Displacement piles - classification and methods for the calculation of bearing capacity.
PublicationDisplacement piles belong to a group of technologies whose main idea is to install or make a pile without extracting ground material. According to definition, contained in PN-EN:1997-1:2008, displacement piles should be considered as driven, pressed in using vibrators and made with the use of spread augers. The classification of piles used so far with regard to the technology of execution is modified. An additional element is the...
-
Multi-objective weather routing of sailing vessels
PublicationThe paper presents a multi-objective deterministic method of weather routing for sailing vessels. Depending on a particular purpose of sailboat weather routing, the presented method makes it possible to customize the criteria and constraints so as to fit a particular user’s needs. Apart from a typical shortest time criterion, safety and comfort can also be taken into account. Additionally, the method supports dynamic weather data:...
-
Automatic classification and mapping of the seabed using airborne LiDAR bathymetry
PublicationShallow coastal areas are among the most inhabited areas and are valuable for biodiversity, recreation and the economy. Due to climate change and sea level rise, sustainable management of coastal areas involves extensive exploration, monitoring, and protection. Current high-resolution remote sensing methods for monitoring these areas include bathymetric LiDAR. Therefore, this study presents a novel methodological approach to assess...
-
Automated hearing loss type classification based on pure tone audiometry data
PublicationHearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...
-
EVOLUTIONARY MULTI–OBJECTIVE WEATHER ROUTING OF SAILBOATS
PublicationThe paper presents a multi-objective method, which optimises the route of a sailboat. The presented method makes use of an evolutionary multi-objective (EMO) algorithm, which performs the optimisation according to three objective functions: total passage time, a sum of all course alterations made during the voyage and the average angle of heel. The last two of the objective functions reflect the navigator’s and passenger’s comfort,...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublicationThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
Music genre classification applied to bass enhancement for mobile technology
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The proposed algorithm is related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt. The classification of music genres is automatically executed employing MPEG 7 parameters and the Principal Component Analysis method applied to reduce information...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
A novel dual mode capacitor biosensor for real-time, label-free DNA detection
Publication -
Brief Literature Review and Classification System of Reliability Methods for Evaluating the Stability of Earth Slopes
PublicationThe issue of slope stability is one of the most important and yet most difficult geotechnical problems. Assessing slope stability is particularly difficult because of the many uncertainties involved in the process. To take these uncertainties into account, probabilistic methods are used, and the reliability approach is adopted. There are many methods for reliability assessment of earth slope stability. However, there is no system...
-
Gaze tracking in multi-display environment
PublicationThis paper presents the basic ideas of eye and gaze tracking in multiple-display environment. The algorithm for display detection and identification is described as well as the rules for gaze interaction in multi display environment. The core of the method is to use special LED markers and eye and scene tracking glasses. Scene tracking camera registers markers position which is then represented as a cloud of points. Analyzing the...
-
A Study on Influence of Normalization Methods on Music Genre Classification Results Employing kNN Algorithms
PublicationThis paper presents a comparison of different normalization methods applied to the set of feature vectors of music pieces. Test results show the influence of min-nlax and Zero-Mean normalization methods, employing different distance functions (Euclidean, Manhattan, Chebyshev, Minkowski) as a pre-processing for genre classification, on k-Nearest Neighbor (kNN) algorithm classification results.
-
Classification of Landscape Physiognomies in Rural Poland: The Case of the Municipality of Cekcyn
PublicationThis article presents a methodology and the results of the classification of the rural landscapes physiognomies conducted on the study area located in the municipality of Cekcyn, Poland. The study aimed to develop a landscape identification method that would combine natural, cultural, and visual criteria with which to implement the provisions of the European Landscape Convention. The realization of the European Landscape Convention...
-
Multi-objective Weather Routing with Customised Criteria and Constraints
PublicationThe paper presents a weather routing algorithm utilising a multi-objective optimisation with constraints, namely the Multi-objective Evolutionary Weather Routing Algorithm (MEWRA). In the proposed approach weather route recommendations can be made simultaneously e.g. for passage time, fuel consumption and safety of passage by means of Pareto optimisation. The sets of criteria and constraints in the optimisation process are fully...
-
ReFlexeNN - the Wearable EMG Interface with Neural Network Based Gesture Classification
PublicationThe electromyographic activity of muscles was measured using a wireless biofeedback device. The aim of the study was to examine the possibility of creating an automatic muscle tension classifier. Several measurement series were conducted and the participant performed simple physical exercises - forcing the muscle to increase its activity accordingly to the selected scale. A small wireless device was attached to the electrodes placed...
-
Multi-criterion, evolutionary and quantum decision making in complex systems
PublicationMulti-criterion, evolutionary and quantum decision making supported by the Adaptive Quantum-based Multi-criterion Evolutionary Algorithm (AQMEA) has been considered for distributed complex systems. AQMEA had been developed to the task assignment problem, and then it has been applied to underwater vehicle planning as another benchmark three-criterion optimization problem. For evaluation of a vehicle trajectory three criteria have...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublicationArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Multi-headed chimera states in coupled pendula
PublicationWe discuss the occurrence of the chimera states in the network of coupled, excited by the clock’s mechanisms pendula. We find the patterns of multi-headed chimera states in which pendula clustered in different heads behave differently (oscillate with different frequencies) and create different types of synchronous states (complete or phase synchronization). The mathematical model of the network shows that the observed chimera states...
-
A multi-agent method for periodicity detection in distributed events
PublicationMulti-agent systems working in constantly changing environments may be challenged by instantaneous unavailability of their autonomous agents caused e.g. by limited computing resources. A new method of self-organization of distributed service components is proposed, suitable for multi-agent systems. This method relies on particular agents carrying out separate analyzes of their individual processing loads or other specific events....