displaying 1000 best results Help
Search results for: TITANIUM OXIDE LAYERS
-
The AFM micrographs of vanadium oxides thin films deposited on quartz glass - the influence of the thickness of the thin film on its morphology
Open Research DataThe DataSet contains the atomic force microscope images of the surface of vanadium oxide thin films. The thin films were obtained by the sol-gel method. The information about sol synthesis is described in the Journal of Nanomaterials. The thin films with different thicknesses (1, 2 or 3 AsP layers) were deposited on a quartz glass substrate and were...
-
The AFM micrographs of vanadium oxides thin films deposited on silicon - the influence of the thickness of the film on morphology
Open Research DataThe DataSet contains the atomic force microscope images of the surface of vanadium oxide thin films. The thin films were obtained by the sol-gel method. The information about sol synthesis is described in the Journal of Nanomaterials. The thin films with different thicknesses (1, 2 or 3 AsP layers) were deposited on a silicon substrate and were annealing...
-
Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials
PublicationThe important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are...
-
Warstwy funkcjonalne tlenkowych ogniw paliwowych
PublicationIn this paper, results describing current research on solid oxide fuel cells conducted at Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics are presented. The results are related to three kinds of functional layers: a thin cathode layer between the porous cathode layer and the electrolyte to improve the cathode performance, a buffer layer between the electrolyte and the cathode to slow...
-
Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents
PublicationThe BieSbeTe alloys with different Bi/Sb/Te ratio were fabricated by an innovative method. For that purpose the oxide reagents were melted at high temperature, then quenched to form pellets, milled to a powder and finally reduced in hydrogen at various temperatures. Complex structures consisting of connected thin layers forming a continuous path between nano- and micrometer size grains have been obtained. The electrical conductivity,...
-
Crystalline Silicon (c-Si)-Based Tunnel Oxide Passivated Contact (TOPCon) Solar Cells: A Review
PublicationContact selectivity is a key parameter for enhancing and improving the power conversion efficiency (PCE) of crystalline silicon (c-Si)-based solar cells. Carrier selective contacts (CSC) are the key technology which has the potential to achieve a higher PCE for c-Si-based solar cells closer to their theoretical efficiency limit. A recent and state-of-the-art approach in this domain is the tunnel oxide passivated contact (TOPCon)...
-
Photoelectric properties of a novel MEH-PPV/F16ZnPc heterojunction
PublicationPhotoelectric properties of a novel poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylen)] (MEH-PPV)/perfluorozincphthalocyanine (F16ZnPc) planar heterojunction provided with BCP and MoO3 buffer layers sandwiched between indium tin oxide (ITO) and Ag are shown. Efficient photogeneration of charge carriers at this junction is observed. Effect of bathocuproine (BCP) and MoO3 buffer layers on the performance of cells is analysed....
-
MnCo2O4 deposited by spray pyrolysis as a protective layer for stainless steel interconects
PublicationStainless steel interconnects working in Solid Oxide Fuel Cells stacks are exposed to high temperature resulting in their corrosion. Protective layers for the hydrogen and oxygen sides are necessary to protect the interconnect material, prolongate the stack lifetime and maintain the output power. In this paper MnCo2O4 protective layer for the oxygen side of the interconnect is deposited by spray pyrolysis and is examined.
-
Submicron inorganic particles as an additional filler in hybrid epoxy matrix composites reinforced with glass fibres
PublicationIn this study, the effect of selected submicron metal oxide (zinc oxide, titanium oxide) or non-metal oxide (silicon dioxide) particles on mechanical and thermo-mechanical properties of epoxy/glass composites was investigated. The applied epoxy resin was a diglycidyl ether of bisphenol-A cured with triethylenetetramine. As a reinforcement twill weave E-glass fabric was used. Hybrid composites (contained particulate and fibrous...
-
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures
PublicationThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube...
-
Insightful Analysis of Phenomena Arising at the Metal|Polymer Interphase of Au-Ti Based Non-Enzymatic Glucose Sensitive Electrodes Covered by Nafion
PublicationThis paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three dierent conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coating. The impact of the provided environment on the oxidation reaction was evaluated by cyclic voltammetry (CV) and electrochemical impedance...
-
Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior
PublicationTitanium and its alloys are often used for long-term implants after their surface treatment. Such surface modification is usually performed to improve biological properties but seldom to increase corrosion resistance. This paper presents research results performed on such metallic materials modified by a variety of techniques: direct voltage anodic oxidation in the presence of fluorides, micro-arc oxidation (MAO), pulse laser treatment,...
-
The Effect of Sodium Tetrafluoroborate on the Properties of Conversion Coatings Formed on the AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation
PublicationMagnesium and its alloys are widely used in many areas because of their light weight, excellent dimensional stability, and high strength-to-weight ratio. However, the material exhibits poor wear and corrosion resistance, which limits its use. Plasma electrolytic oxidation (PEO) is an effective surface modification method for producing ceramic oxide layers on Mg and their alloys. The influence of the additions of sodium tetrafluoroborate...
-
Ceria Based Protective Coatings for Steel Interconnects Prepared by Spray Pyrolysis
PublicationStainless steels can be used in solid oxide fuel/electrolysis stacks as interconnects. For successful long term operation they require protective coatings, that lower the corrosion rate and block chemical reactions between the interconnect and adjacent layers of the oxygen or the hydrogen electrode. One of the promising coating materials for the hydrogen side is ceria. Using standard sintering techniques, ceria sinters at around...
-
Defective TiO2 Core-Shell Magnetic Photocatalyst Modified with Plasmonic Nanoparticles for Visible Light-Induced Photocatalytic Activity
PublicationIn the presented work, for the first time, the metal-modified defective titanium(IV) oxide nanoparticles with well-defined titanium vacancies, was successfully obtained. Introducing platinum and copper nanoparticles (NPs) as surface modifiers of defective d-TiO2 significantly increased the photocatalytic activity in both UV-Vis and Vis light ranges. Moreover, metal NPs deposition on the magnetic core allowed for the effective separation...
-
The influence of synthesis method on the microstructure and catalytic performance of Y 0.07 Sr 0.93 Ti 0.8 Fe 0.2 O 3-δ in synthetic biogas operated solid oxide fuel cells
PublicationThe Y0.07Sr0.93Ti0.8Fe0.2O3-δ (YSTF) material was fabricated using three different synthesis methods: modified polymer precursor method (MPP), Pechini method and a solid state reaction method. It was applied as an anode catalytic material for biogas reforming in solid oxide fuel cells. Clear differences in the microstructure of fabricated catalytic layers were found, mainly with respect to a grain size and distribution of grains....
-
Corrosion Study of Ceria Protective Layer Deposited by Spray Pyrolysis on Steel Interconnects
PublicationSingle fuel cells and electrolysis cells are assembled into stacks using interconnects in order to increase power and gas production capacity. The most common choice for the interconnect material is stainless steel. It has good electrical and mechanical properties and is also cost effective. One of the problems when using steel is the formation of a thermally grown oxide scale during use which has a lower electrical conductivity...
-
Facilitated water transport in composite reduced graphene oxide pervaporation membranes for ethanol upgrading
PublicationHigh purity ethanol is one of the most sought-after renewable energy sources. However, standard production methods yield ethanol of insufficient quality. Membrane processes such as pervaporation are recognized as a viable method for upgrading ethanol. Their performance and selectivity depend solely on membrane employed. Hydrophilic polyvinyl alcohol (PVA) membranes are used industrially for this purpose, but there is a trade-off...
-
Cytocompatibility, antibacterial, and corrosion properties of chitosan/polymethacrylates and chitosan/poly(4‐vinylpyridine) smart coatings, electrophoretically deposited on nanosilver‐decorated titania nanotubes
PublicationThe development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with...
-
Application of multisine nanoscale impedance microscopy to heterogeneous alloy surface investigations
PublicationIn the recent years atomic force microscopy is recognized as valuable tool for investigation of surficial features of construction materials. It concerns, among other things, studies of changes caused by such phenomena as galvanic corrosion, passivation associated with the growth of oxide layers, or sensitization of austenitic steels with the formation of carbide phases. In addition, atomic forcemicroscopy allows easy coupling...
-
Effect of the Post-Weld Surface Condition on the Corrosion Resistance of Austenitic Stainless Steel AISI 304
PublicationSurfaces of welded elements made of corrosion-resistant (stainless) steels develop temper colours. The removal of thickened oxide layers off steels exposed to temperatures below 300°C is necessary and entails the restoring of high corrosion resistance of the stainless steel. The article presents tests concerned with the effect of a method applied to remove post-weld temper on the corrosion resistance of austenitic stainless steel...
-
Hydrogen degradation of pre-oxidized zirconium alloys
PublicationThe presence of the oxide layers on Zr alloys may retard or enhance the hydrogen entry and material degradation, depending on the layer features. This research has been aimed to determine the effects of pre-oxidation of the Zircaloy-2 alloy at a different temperature on hydrogen degradation. The specimens were oxidised in laboratory air at 350°C, 700°C, and 900°C. After, some samples were tensed at 10-5 strain rate and simultaneously...
-
Chemical investigation of the Al2O3 ultra-thin films
Open Research DataUltra-thin layers of oluminum oxide (Al2O3) were deposited by ALD method. Atomic layer deposition provides precise thickness control down to a single atomic layer. The precursors used were trimethylaluminum (Sigma-Aldrich) and purified water. The deposition of the atomic layer was carried out at 200 °C. Samples with a thickness of 2 and 8 nm of alumina...
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublicationIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3 – Optical measurements and FDTD simulations
PublicationThe Au nanostructures have been coated with an ultra-thin films of amorphous aluminium oxide. Optical absorption spectra show the influence of the thickness of Al2O3 on plasmon resonance wavelength. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of this film. It allows control of the optical spectra of the coated particles....
-
Peroxymonosulfate-assisted photocatalytic degradation of artificial sweeteners in water
PublicationIn the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate - artificial sweeteners frequently present in wastewaters and surface waters worldwide. The TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation...
-
Study of Photovoltaic Devices with Hybrid Active Layer
PublicationThe aim of this work is to present the influences of composition of the material andmanufacturing technology conditions of the organic photovoltaics devices (OPv) with the organicand hybrid bulk heterojunction on the active layers properties and cells performance. The layers wereproduced by using small molecular compounds: the metal-phthalocyanine (MePc) and perylenederivatives (PTCDA) and the titanium dioxide (TiO2) nanoparticles....
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Biocompatibility and bioactivity of load-bearing metallic implants
PublicationThe main objective of here presented research is to develop the titanium (Ti) alloy base composite materials possessing better biocompatibility, longer lifetime and bioactivity behaviour for load-bearing implants, e.g. hip joint and knee joint endoprosthesis. The development of such materials is performed through: modeling the material behaviour in biological environment in long time and developing of new procedures for such evaluation;...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublicationAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
-
Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications
PublicationIn this work we study the luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through thermal annealing of the gold thin film. Thermal dewetting of gold film results in spherical gold...
-
Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons—A Review
PublicationDry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Currently used nickel catalysts on oxide supports suffer from rapid deactivation due to sintering of active metal particles or the deposition of carbon deposits blocking the flow of gases through the reaction tube. In this view,...
-
Preparation and structure of nanocrystalline sol-gel derived Cu doped LiTi2O4 powders
PublicationAmong the spinel oxides materials, lithium titanate (Li1+xTi2-xO4 where 0 ≤ x ≤ 0.33) could be very interested from pratical applications point of view. Lithium titanate is a II type spinel oxide superconductor with relatively high (~13 K for x = 0) superconducting transition temperature Tc. Above Tc lithium titanate shows metallic behaviour and can be used e.g. as electrodes for rechargeable lithium-ion batteries. Since the discovery...
-
Laser induced formation of copper species over TiO2 nanotubes towards enhanced water splitting performance
PublicationWe proposed fast and scalable route where the ordered TiO2 nanotubes coated with thin copper layers were annealed by the laser beam of 355 nm wavelength at different fluencies in the range of 15–120 mJ/cm2. As a result, copper species are integrated with the titania substrate and the formed material exhibits unique optical absorption bands in the visible range. Moreover, X-ray photoelectron spectroscopy analysis reveals the formation...
-
Interaction of SrTi0.65Fe0.35O3-δ with LaNi0.6Fe0.4O3-δ, La0.6Sr0.4Co0.2Fe0.8O3-δ and Ce0.8Gd0.2O2-δ
PublicationIron doped strontium titanates SrTi1-xFexO3-δ are perovskites of versatile properties. They can be used in solid oxide fuel cells or high temperature oxygen sensors. Their reactivity with electrolyte materials, cathode buffer layer materials, other cathode materials or current collector layers has not been fully tested. In this study we use X-ray diffraction to check SrTi0.65Fe0.35O3-δ compatibility with Ce0.8Gd0.2O2-δ (used as...
-
The electrical properties mesurements of SOFC with Ce0.9Cu0.1O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.9Cu0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of SOFC with Ce0.9Co0.1O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.9Co0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of SOFC with Ce0.8Co0.1Cu0.1O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Co0.1Cu0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of SOFC with Ce0.8Co0.15Cu0.05O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Co0.15Cu0.05O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
EFFECT OF SURFACE STATE AND STRESS ON AN OXIDATION OF THE ZIRCALOY-2 ALLOY
PublicationZr alloys are widely used as materials for nuclear fuel pellets in the nuclear industry. In the case of the LOCA or RIA happen, a temperature may locally reach high values. Even if the high temperature maintains shortly, the zirconium oxides may become permeable, absorb hydrogen appearing in cooling water from decomposition reaction and crack because of formation and brittle failure of hydrides. Such model cannot so far take into...
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublicationIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Influence of High Temperature Oxidation on Hydrogen Absorption and Degradation of Zircaloy-2 and Zr 700 Alloys
PublicationThe present research was aimed at determining the effects of the oxide layers on hydrogen absorption, microstructure and mechanical properties of the Zircaloy- 2 and Zr 702 alloys. The oxidation was made at 350 °C, 700 °C and 900 °C for 10 to 30 min in laboratory air, followed by hydrogen cathodic charging for 72 h and annealing at 400 °C for 4 h. The slow strain rate tests were carried out on oxidized, charged and annealed specimens. The...
-
Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings
Publication: Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions,...
-
Temperature-controlled nanomosaics of AuCu bimetallic structure towards smart light management
PublicationGold–copper nanostructures are promising in solar-driven processes because of their optical, photocatalytic and photoelectrochemical properties, especially those which result from the synergy between the two metals. Increasing interest in their internal structure, such as the composition or distribution of the Au and Cu as well as the size and shape of the nanoparticles, have developed to define their physicochemical properties. In...
-
Visible-light-driven lanthanide-organic-frameworks modified TiO2 photocatalysts utilizing up-conversion effect
PublicationHighly efficient and quite stable composite with core-shell-like architecture reported herein, responds to the challenge of sunlight-driven photocatalysts. The Ln(ndc)/TiO2 photocatalytic system comprises active lanthanide-carboxylate coordination networks (Nd, Er, Ho, and Tm as metal ions, and 2,6-naphthalene dicar-boxylic acid as the organic linker) and inert titanium dioxide and allow to convert incompatible visible radiation...
-
Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment
PublicationPolymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide ( TiO2) with different concentrations. The key observation...
-
Fluorine ions in photocatalysts’ synthesis: an obstacle or an ally? The investigation of photocatalysts in Ti-O-F system
PublicationTitanium(IV) oxide (TiO2) is one of the most promising photocatalysts, which is expected to be applied in the photocatalytic degradation of xenobiotics. For sustainable development and green chemistry approach recently, much effort has been paid to enhance TiO2 photocatalytic activity in UV-vis light by modifying its structure. The photocatalytic process’s complexity cannot be simply described as electron-hole pairs generations...
-
Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light
PublicationThe Au-TiO2 and Ag/Au-TiO2 nanoparticles have been prepared using a water-in-oil microemulsion system of water/AOT/cyclohexane and water/Triton X-100/cyclohexane. The obtained photocatalysts were subsequently characterized by a BET method, DRS spectroscopy, X-ray photoelectron emission spectroscopy (XPS), scanning transmission electron microscopy (STEM) and X-ray powder diffraction analysis (XRD). For gold-doped titanium (IV) oxide...
-
NOx Photooxidation over Different Noble Metals Modified TiO2
PublicationWe compared the activity enhancement effect of noble metal deposited on TiO2 in photocatalytic nitrogen oxides oxidation. Titanium dioxide was decorated with Ag, Au, Pt or Pd in the sol-gel process. Synthesized catalysts were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller measurement (BET), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX)....
-
Linking optical and electronic properties to photoresponse of heterojunctions based on titania nanotubes and chromium, molybdenum, and tungsten oxides
PublicationThe development of photosensitization strategies for titanium dioxide is necessary for the enhancement of its optical and electronic properties towards its application potential in solar photoelectrochemistry. In this work, significant differences in the photosensitizing capability of the 6th group transition metal oxides applied on the surface of titania nanotubes are reported. For the first time, correlations between the experimentally...