Search results for: electrodes
-
Effects of La0.8Sr0.2MnO3 and Ag electrodes on bismuth-oxide-based low-temperature solid electrolyte oxygen generators
PublicationIn this study, La0.8Sr0.2MnO3 (LSM) was used as the ceramic electrode in a (Bi1.50Y0.50)0.98Zr0.04O3+δ (BYO)-based solid electrolyte oxygen generator (SEOG) and its performance was compared with that of a previously studied high-fire Ag electrode. Among La0.6Sr0.4Co0.2Fe0.8O3, LaNi0.6Fe0.4O3, Cu1.4Mn1.6O4, and LSM materials, only LSM materials did not trigger any chemical reaction or interdiffusion with BYO at temperatures up to...
-
Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance
PublicationThis study presents the preparation and characterization of few-layer black phosphorus (FLBP) chitosan electrodes by controlled electrochemical deposition of chitosan nanoparticles on FLBP-modified glassy carbon electrodes. FLBP was prepared by solvent-assisted exfoliation of bulk BP and was further modified with chitosan forming together a nanocomposite, including easy cross-linking with nanomaterials and film-forming properties....
-
Investigation of sour substances by five-channel potentiometric taste sensor containing all-solid-state-electrodes ( ASSEs)
PublicationAn elaboration of taste sensor for discrimination of different food products is of great importance for food industry. Potentiometric taste sensor containing ion selective electrodes with lipid/polymer membranes has already been applied commercially in food industry. However, time-consuming and demanding preconditioning method of ions selective electrodes as well as maintenance of electrodes’ bodies are disadvantages of this taste...
-
INVESTIGATION OF SOUR SUBSTANCES BY FIVE-CHANNEL POTENTIOMETRIC TASTE SENSOR CONTAINING ALL-SOLID-STATE- ELECTRODES (ASSEs)
PublicationAn elaboration of taste sensor for discrimination of different food products is of great importance for food industry. Potentiometric taste sensor containing ion selective electrodes with lipid/polymer membranes has already been applied commercially in food industry. However, time-consuming and demanding preconditioning method of ions selective electrodes as well as maintenance of electrodes’ bodies are disadvantages of this taste...
-
Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes
PublicationSurface oxidation processes play a key role in understanding electrochemical properties of boron-doped diamond (BDD) electrodes. The type of surface termination groups, which create the potential window of electrolytic water stability or hydrophobicity, influences such properties. In this study the kinetics of oxidation process under anodic polarization were studied in situ by means of Dynamic Electrochemical Impedance Spectroscopy...
-
Inhibition of impurities formation in the synthesis of N-alkyltheobromines stimulated by microwave irradiation. Cationic and anionic response of membrane electrodes
PublicationN-Alkyltheobromine (1-9) derivatives were obtained by reacting theobromine with appropriate alkyl halide under microwave irradiation at 100-150 W and by conventional synthesis. Formation of by-products of oxygen atom alkylation and 1-N-alkyltheobromine ring opening were considered. The presented compounds 1-5 have been studied as ion carriers in ion-selective membrane electrodes. Selectivity of these membranes was studied towards...
-
Electrodes consisting of PEDOT modified by Prussian Blue analogues deposited onto titania nanotubes – Their highly improved capacitance
PublicationIn this work we present the outstanding energy storage of prepared inorganic-organic heterojunction where hydrogenated ordered titania nanotubes (H-TiO2NT) were modified by the hybrid made of poly(3,4-ethylenedioxythiophene) (pEDOT) and iron hexacyanoferrate centres (Fehcf, Prussian Blue). The material TiO2NT/pEDOT:Fechf was obtained electrochemically by means of: anodization, hydrogenation and finally, electropolymerization of...
-
Tuning of the Electrochemical Properties of Transparent Fluorine-doped Tin Oxide Electrodes by Microwave Pulsed-plasma Polymerized Allylamine
PublicationWe report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine...
-
Pitting corrosion characterization by electrochemical noise measurements on asymmetric electrodes. [DOI 10.1007/s10008-008-0643-y]
PublicationObecność korozji wżerowej może być wykryta na podstawie występowania charakterystycznych przebiegów prądu płynącego między dwiema elektrodami, których wyprowadzenia są zwarte. Autorzy proponują nową metodę, która zachowuje informacje o stałej czasowej tych charakterystycznych dla procesów wżerowania przebiegów. Metoda została zastosowana do analizy szumów występujących podczas korozji stali 0H18N9 pod wpływem 1M roztworu FeCl3...
-
A new phosphonium calix[4]arene for selective anion recognition: synthesis and studies in solution and in ion selective electrodes
PublicationZaprezentowana została synteza i charakteryzacja tetra (trifenylofosfoniowego) p-tert-butylkaliks[4]arenu 2. Oddziaływania z anionami były badane z użyciem (1)H oraz (31)P NMR i spektrofotometrii absorpcyjnej UV. Badania wykazały oddziaływania z anionami: CLO4-, I-, oraz SCN-. Selektywność jonoforu 2 badano również w membranowych elektrodach jonoselektywnych (ISE) PCV/o-NPOE. Elektroda zawierająca związek 2 generuje odpowiedź potencjometryczną...
-
PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times
Publication -
Differences in Electrochemically Deposited PEDOT(PSS) Films on Au and Pt Substrate Electrodes: A Quartz Crystal Microbalance Study
Publication -
Dynamic Electrochemical Impedance Spectroscopy (DEIS) as a Tool for Analyzing Surface Oxidation Processes on Boron-Doped Diamond Electrodes
Publication -
In situ spectroelectrochemical and theoretical study on the oxidation of a 4H-imidazole-ruthenium dye adsorbed on nanocrystalline TiO2thin film electrodes
PublicationTerpyridine 4H-imidazole-ruthenium(ii) complexes are considered promising candidates for use as sensitizers in dye sensitized solar cells (DSSCs) by displaying broad absorption in the visible range, where the dominant absorption features are due to metal-to-ligand charge transfer (MLCT) transitions. The ruthenium(iii) intermediates resulting from photoinduced MLCT transitions are essential intermediates in the photoredox-cycle...
-
Comparative Study of Taste Substance Sensing by Liquid Membrane Oscillator and Electrochemical Systems With All-Solid-State Electrodes
PublicationIn food industry, different types of sensors are used for characterizing and quantifying taste substances. Therefore, it is important to establish the principal advantages and disadvantages of these sensors for optimal application. In this paper, two possible systems are compared for sensing the four fundamental tastes: sour (citric acid), salty (sodium chloride), sweet (sucrose), and bitter (caffeine or quinine hydrochloride). One...
-
Detection of the Plant Pathogen Pseudomonas Syringae pv. Lachrymans on Antibody-Modified Gold Electrodes by Electrochemical Impedance Spectroscopy
PublicationThe present work describes an impedimetric immunosensor for Pseudomonas syringae pv. lachrymans (Psl) detection. This pathogen infects many crop species causing considerable yield losses, thus fast and cheap detection method is in high demand. In the assay, the gold disc electrode was modified with 4-aminothiophenol (4-ATP), glutaraldehyde (GA), and anti-Psl antibodies, and free-sites were blocked with bovine serum albumin (BSA)....
-
High performance LaNi1-xCoxO3-δ (x = 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells
PublicationOxygen electrodes prepared by infiltration of yttria stabilized zirconia backbone with Ce0.8Gd0.2O1.95 barrier layer and LaNi1-xCoxO3-δ (x=0.4 to 0.7) catalyst for application in reversible solid oxide cells have been studied. The effect of temperature and Ni:Co ratio on their phase composition, microstructure and electrochemical properties are discussed. It was shown that oxygen electrodes infiltrated with LaNi0.5Co0.5O3-δ had...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
All solid state electrodes taste sensor with modified polymer membranes for discrimination of mineral water with different CO2 content
PublicationA potentiometric taste sensor with All Solid State Electrodes containing five all solid state electrodes with appropriate lipophilic compounds (benzyldimethyltetradecylammonium chloride, dodecyltrimethylammonium bromide, palmitic acid, stearic acid, and phytol) embedded in a polymer membrane was applied for discrimination of mineral water samples differed in CO2 content. Samples of still, slightly sparkling, and sparkling Naleczowianka...
-
Boron-doped diamond nanosheet volume-enriched screen-printed carbon electrodes: a platform for electroanalytical and impedimetric biosensor applications
PublicationThis paper focuses on the development of a novel electrode based on boron-doped diamond nanosheet full-volume-enriched screen-printed carbon electrodes (BDDPE) for use as an impedimetric biosensor. Impedimetric biosensors offer high sensitivity and selectivity for virus detection, but their use as point-of-care devices is limited by the complexity of nanomaterials’ architecture and the receptor immobilisation procedures. The study...
-
Heterogeneous distribution of surface electrochemical activity in polycrystalline highly boron-doped diamond electrodes under deep anodic polarization
PublicationThe surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual...
-
Study of oxygen electrode reactions on symmetrical porous SrTi0.30Fe0.70O3-δ electrodes on Ce0.8Gd0.2O1.9 electrolyte at 800 °C–500 °C
PublicationIron doped strontium titanates (SrTi1-xFexO3-δ) are an interesting mixed ionic-electronic conductor model used to study basic oxygen reduction/oxidation reactions. In this work, we performed an impedance spectroscopy study on symmetrical porous SrTi0.30Fe0.70O3-δ (STF70) electrodes on a ceriabased electrolyte. The sample was measured in varying oxygen concentration: from 0.3% to 100% in 800 °C - 500 °C temperature range. Low polarisation...
-
Study on surface termination of boron-doped diamond electrodes under anodic polarization in H2SO4 by means of dynamic impedance technique
PublicationAnodic oxidation is a popular way to modify termination bonds at boron doped diamond electrodes altering their electrochemical and physicochemical properties. Our studies, performed with dynamic electrochemical impedance spectroscopy technique, supported with X-ray photoelectron spectroscopy and ellipsometry analysis prove its utility in continuous on-line monitoring of impedance changes on the electrode surface under polarization...
-
A simple route of providing a soft interface for PEDOT: PSS film metallic electrodes without loss of their electrical interface parameters
PublicationThe work presents the development of a soft interface at PEDOT:PSS film without changing its electrical interface parameters. In the first step, PEDOT:PSS is electrodeposited on the commercial platinum electrode under the state-of-the-art conditions desirable for different electrochemical electrodes. Secondly, a pure hydrogel layer is deposited on the top of the electrodeposited PEDOT:PSS film under conditions that provide desirable...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Influence of the Silver Nanoparticles (AgNPs) Formation Conditions onto Titanium Dioxide (TiO2) Nanotubes Based Electrodes on Their Impedimetric Response
Publication -
CGO as a barrier layer between LSCF electrodes and YSZ electrolyte fabricated by spray pyrolysis for solid oxide fuel cells
PublicationPerovskite La0.6Sr0.4Co0.2Fe0.8O3 − δ (LSCF) is often used as a cathode material for solid oxide fuel cells (SOFC) due to high mixed ionic and electronic conductivity and good catalytic activity. Unfortunately, sintering of the LSCF cathode together with the yttria stabilized zirconia (YSZ) electrolyte, leads to formation of the La2Zr2O7 and SrZrO3 phases in the interface. These phases increase the resistance of the cell. To avoid...
-
Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte
PublicationComposites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth vanadate using pulsed laser deposition. The formation of the TiO2/BiVO4 junction leads to enhancement of pseudocapacitance in the cathodic potential range. The third component,...
-
Enhanced stability of electrochemical performance of few-layer black phosphorus electrodes by noncovalent adsorption of 1,4-diamine-9,10-anthraquinone
PublicationIn this paper, the novel noncovalent functionalisation strategy of few-layer black phosphorus by 1,4-diamine-9,10-anthraquinone electrode was proposed and studied. The degradation of few-layer black phosphorus under exposure to oxygen and water is a significant obstacle to its use as an electroanalytical electrode. The anthraquinone compound adsorbed at black phosphorus flakes results in improved prevention of the phosphorus surface...
-
Potentiometric sensor containing set of ion selective electrodes with lipid modified membranes for quality assessment of tested non-alcoholic beverages
PublicationPotentiometric sensors may be a good tool for fast quality control of commercial drinks. In this work, such a sensor, containing a set of ion-selective electrodes with lipid-modified membranes (benzylhexadecyldimethylammonium chloride monohydrate, hexadecylamine, 1-dodecanol, elaidic acid, cholesterol) was used for discrimination and quality control of non-alcoholic beverages, mainly composed of sugar and citric acid. It was found...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
PublicationThere is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized...
-
Highly selective impedimetric determination of Haemophilus influenzae protein D using maze-like boron-doped carbon nanowall electrodes
PublicationThis study reports a novel impedimetric immunosensor for protein D detection in purified and bacterial (Haemophilus influenzae, Hi) samples. The detection was based on antigen recognition by anti-protein D antibodies (apD) immobilised at the maze-like boron-doped carbon nanowall electrodes (B:CNW). The B:CNW electrodes were synthesised, and their surface was characterised by scanning electron microscopy (SEM) and X-ray photoelectron...
-
Electrochemical performance of Co3O4/CeO2 electrodes in H2S/H2O atmospheres in a proton-conducting ceramic symmetrical cell with BaZr0.7Ce0.2Y0.1O3 solid electrolyte
PublicationThe electrochemical performance of Co3O4/CeO2 mixed oxide materials as electrodes, when exposed to H2S/H2O atmospheres, was examined employing a proton conducting symmetrical cell, with BaZr0.7Ce0.2Y0.1O3 (BZCY72) as the solid electrolyte. The impact of temperature (700–850 °C) and H2S concentration (0–1 v/v%) in steam-rich atmospheres (90 v/v% H2O) on the overall cell performance was thoroughly assessed by means of electrochemical...
-
Optimizing the Copper Content in GdBa0.5Sr0.5Co2-XCuxO5+δ Double Perovskites as the High Performance Oxygen Electrodes for Reversible Solid Oxide Cells
Publication -
Optimizing the Copper Content in GdBa0.5Sr0.5Co2-XCuxO5+δ Double Perovskites as the High Performance Oxygen Electrodes for Reversible Solid Oxide Cells
Publication -
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
Publication -
Efficient removal of 2,4,6-trinitrotoluene (TNT) from industrial/military wastewater using anodic oxidation on boron-doped diamond electrodes
PublicationWith growing public concern about water quality particular focus should be placed on organic micropollutants, which are harmful to the environment and people. Hence, the objective of this research is to enhance the security and resilience of water resources by developing an efficient system for reclaiming industrial/military wastewater and protecting recipients from the toxic and cancerogenic explosive compound – 2,4,6-trinitrotoluene...
-
Application of Potentiometric Taste Sensor with All Solid State Electrodes for Distinguishing of Red Dry Wines from Polish and French Vineyards
PublicationOpracowano nowy potencjometryczny czujnik smaku z sześcioma różnymi elektrodami typu All Solid State Electrode (ASSE). Każda z elektrod zawiera dwie warstwy: polimer przewodzący i membranę lipidowo-polimerową, w której rozpuszczone są poszczególne związki lipidowe. Potencjometryczny sensor smaku charakteryzuje się globalną selektywnością. Zastosowano go w celu odróżnienia próbek wytrawnych czerwonych win pochodzących z różnych...
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Dipodal Tetraamide Derivatives of 1,10-Diaza-18-Crown-6 and Alkylmalonic Acids—Synthesis and Use as Ionophores in Ion Selective Membrane Electrodes
PublicationNovel dipodal derivatives of an 18-membered diaza-crown ether with two diamide chains featuring methylmalonic or butylmalonic acid residues were obtained and tested as ionophores in ion-selective plasticized membrane electrodes. The objective of the study was to identify measurement conditions which ensure the most favorable performance for magnesium ion-selective electrodes. The relationship between the molar lipophilic anion...
-
Insightful Analysis of Phenomena Arising at the Metal|Polymer Interphase of Au-Ti Based Non-Enzymatic Glucose Sensitive Electrodes Covered by Nafion
PublicationThis paper focuses on the examination of glucose oxidation processes at an electrode material composed of gold nanoparticles embedded in a titanium template. Three dierent conditions were investigated: the chloride content in the electrolyte, its ionic conductivity and the presence of a Nafion coating. The impact of the provided environment on the oxidation reaction was evaluated by cyclic voltammetry (CV) and electrochemical impedance...
-
Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies
PublicationNew rapid pathogen detection methods with improved cost-effectiveness and efficiency are currently in the focus of the scientists from all over the world. Based on the experiences from the rapid spread of the influenza virus pandemic in 2009 it is clear that the development of the system for early diagnosis of this infection is essential. The crucial stage of the treatment is the detection of the viral infection during its initial...
-
Improved electrocatalytic response toward hydrogen peroxide reduction of sulfanyl porphyrazine/multiwalled carbon nanotube hybrids deposited on glassy carbon electrodes
Publication -
Direct determination of paraquat herbicide by square-wave voltammetry by two-step transfer mechanism at heterogeneous boron-doped carbon nanowall electrodes
PublicationBoron-doped carbon nanowalls (B:CNW) versus boron-doped diamond (BDD) materials were investigated for the effective electrochemical detection of highly toxic herbicide paraquat (PQ). Depending on the surface morphology and functional groups of BDD and B:CNWs, the electrochemical absorption and detection of the target analyte PQ revealed different detection mechanisms. The surface absorption mechanism was mainly observed for BDD,...
-
Investigation of poly(3,4-ethylenedioxythiophene) deposition method influence on properties of ion-selective electrodes based on bis(benzo-15-crown-5) derivatives
PublicationGlassy carbon electrodes modified by conductive polymers and membrane with derivatives of bis(benzo-15-crown-5) were tested as solid contact ion selective electrodes for K+ ions concentration determination. PEDOT with PSS, Cl- and ClO4- counter ions was electrochemically deposited onto glassy carbon substrates using four different electrochemical approaches (potentiostatic, galvanostatic, potentiodynamic and potentiostatic pulses)....
-
Solid-Contact Ion-Selective Electrodes with Highly SelectiveThioamide Derivatives of p-tert-Butylcalix[4]arene for theDetermination of Lead(II) in Environmental Samples
PublicationThioamide derivatives of p-tert-butylcalix[4]arene were used as ionophores in the development of solid-contact ion-selective electrodes based on conducting polymer poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) which was synthesized by electrodeposition on the glassy carbon electrodes. The typical ion-selective membranes with optionally two different plasticizers [bis(2-ethylhexyl)sebacate (DOS) and 2-nitrophenyl...
-
Effect of sintering temperature on electrochemical performance of porous SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) oxygen electrodes for solid oxide cells
PublicationThis work evaluates the effects of the sintering temperature (800 °C, 900 °C, 1000 °C) of SrTi1-xFexO3-δ (x = 0.35, 0.5, 0.7) porous electrodes on their electrochemical performance as potential oxygen electrode materials of solid oxide cells. The materials were prepared by a solid-state reaction method and revealed the expected cubic perovskite structure. After milling, the powders were characterised by a sub-micrometre particle...
-
Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
PublicationIn this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra...
-
The possibility of application of the potentiometric sensor with all-solid-state electrodes containing lipid-polymer membranes for classification of tested black leaf teas in terms of their quality
PublicationPotentiometric sensor with all-solid-state electrodes containing lipid-polymer membranes for a set of black leaf teas coming from four countries (China, India, Sri Lanka and Kenia) classification was applied. The tested tea samples were reassigned to quality classes marked with numbers I–V according to the information available. The sensor results of tea samples are presented in the form of radar charts. It was observed that, in...