Search results for: SUPER RESOLUTION, DEEP LEARNING, THERMAL IMAGERY, OBJECT DETECTION
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
Publication -
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Detection of thermal radiation using lanthanum-strontium-iron oxide (LSFO) bolometers
PublicationW artykule przedstawiono bolometr wykonany z tlenków lantanowo-strontowo-żelazowych zastosowany do detekcji promienowania podczerwonego. Parametry bolometru były badane za pomocą wzorcowego źródła poromieniowania o temperaturze 38°C (311 K) oddalonego od bolometru o 500 mm. W trakcie pomiarów uzyskano stosunek sygnał/szum wynoszący ok. 62 (tj. 35.9 dB). Na podstawie wyników pomiarów oszacowano dokładność pomiaru temperatury za...
-
Thermal decomposition of surface compounds for the generation of small quantities of acetaldehyde. Calibration of a thermal desorption gas chromatography flame ionization detection.
PublicationW pracy opisano sposób wytwarzania niewielkich ilości acetaldehydu w procesie termicznego rozkładu związku powierzchniowego uzyskanego w wyniku chemicznej modyfikacji żelu krzemionkowego.Proces rozkładu prowadzony jest w temperaturze 130-190 stopni Celsjusza.Przedstawiono również sposób syntezy prowadzący do uzyskania odpowiedniego związku powierzchniowego.
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublicationThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publication -
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publication -
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publication -
Michał Grochowski dr hab. inż.
PeopleProfessor and a Head of the Department of Intelligent Control and Decision Support Systems at Gdansk University of Technology (GUT). He is also a Member of the Board of the Digital Technologies Center of GUT. He received his M.Sc. degree in Control Engineering in 2000 from the Electrical and Control Engineering Faculty at the GUT. In 2004 he received a Ph.D. degree in Automatic Control and Robotics from this...
-
AITP - AI Thermal Pedestrians Dataset
PublicationEfficient pedestrian detection is a very important task in ensuring safety within road conditions, especially after sunset. One way to achieve this goal is to use thermal imaging in conjunction with deep learning methods and an annotated dataset for models training. In this work, such a dataset has been created by capturing thermal images of pedestrians in different weather and traffic conditions. All images were manually annotated...
-
Predicting the Purchase of Electricity Prices for Renewable Energy Sources Based on Polish Power Grids Data Using Deep Learning Models for Controlling Small Hybrid PV Microinstallations
Publication -
Mirosław Wołoszyn dr hab. inż.
PeopleMirosław Wołoszyn born in 1963 in Gdynia. He received the M.Sc. degree in 1987, the Ph.D. degree in 1997, and the D.Sc. (‘habilitation’) degree in 2013, all from the Gdańsk University of Technology. Since 1987 he has been with the above university, where he is currently Associate Professor of Electrical Engineering. His research interests include localization and identification of ferromagnetic objects by means of the magnetometric...
-
Detection of the Oocyte Orientation for the ICSI Method Automation
PublicationAutomation or even computer assistance of the popular infertility treatment method: ICSI (Intracytoplasmic Sperm Injection) would speed up the whole process and improve the control of the results. This paper introduces a preliminary research for automatic spermatozoon injection into the oocyte cytoplasm. Here, the method for detection a correct orientation of the polar body of the oocyte is presented. Proposed method uses deep...
-
Efkleidis Katsaros
PeopleEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublicationThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Optimizing of target detection and tracking processes realized on consoles of passive sonar with linear towed antenna
PublicationThe long-range passive towed sonar was first modernised a few years ago. Building on operator experience over that period, a concept was developed of optimising the tasks performed by sonar operators, and improving forms of imaging to inform about object detection and support object tracking. The concept was implemented and successfully tested during ships’ manoeuvres. The optimisation of operator tasks was designed to keep listening...
-
Fully Automated AI-powered Contactless Cough Detection based on Pixel Value Dynamics Occurring within Facial Regions
PublicationIncreased interest in non-contact evaluation of the health state has led to higher expectations for delivering automated and reliable solutions that can be conveniently used during daily activities. Although some solutions for cough detection exist, they suffer from a series of limitations. Some of them rely on gesture or body pose recognition, which might not be possible in cases of occlusions, closer camera distances or impediments...
-
Toward Robust Pedestrian Detection With Data Augmentation
PublicationIn this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...
-
Abdalraheem Ijjeh Ph.D. Eng.
PeopleThe primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.
-
Optimized AVHRR land surface temperature downscaling method for local scale observations: case study for the coastal area of the Gulf of Gdańsk
PublicationSatellite imaging systems have known limitations regarding their spatial and temporal resolution. The approaches based on subpixel mapping of the Earth’s environment, which rely on combining the data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution, are of considerable interest. The paper presents the downscaling process of the land...
-
Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment
PublicationThis paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...
-
Comparison of direct and inverse methods of satellite observations downscaling for the coastal zone area
PublicationThe Earth observation satellite imaging systems have known limitations, especially regarding their spatial and temporal resolution. Therefore, approaches which aim to combine data retrieved from sensors of higher temporal and lower spatial resolution with the data characterized by lower temporal but higher spatial resolution are of high interest. This allows for joint utilization of the advantages of both these types of sensors....
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublicationThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
The Innovative Faculty for Innovative Technologies
PublicationA leaflet describing Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. Multimedia Systems Department described laboratories and prototypes of: Auditory-visual attention stimulator, Automatic video event detection, Object re-identification application for multi-camera surveillance systems, Object Tracking and Automatic Master-Slave PTZ Camera Positioning System, Passive Acoustic Radar,...
-
Piotr Szczuko dr hab. inż.
PeoplePiotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...
-
Bartosz Szostak mgr inż.
PeopleBartosz Szostak graduated with a degree in engineering, specializing in Geodesy and Cartography, at the Gdansk University of Technology in 2019. On 2021, he graduated with a Master's degree also in the field of Geodesy and Cartography at the Gdansk University of Technology. The topics covered in his thesis were machine learning and object detection.
-
Muhammad Usman PhD
PeopleMuhammad Usman is currently a Computer Vision Researcher at Gdansk University of Technology, working on the BE-LIGHT project, where his research focuses on advancing biomedical diagnostics through the integration of light-based technologies and machine learning techniques. He has completed his Master’s degree in Control Science and Engineering from the University of Science and Technology of China (USTC), Hefei, China. His research...
-
Olgun Aydin Dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublicationWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublicationLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublicationMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublicationRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
Vident-synth: a synthetic intra-oral video dataset for optical flow estimation
Open Research DataWe introduce Vident-synth, a large dataset of synthetic dental videos with corresponding ground truth forward and backward optical flows and occlusion masks. It can be used for:
-
Moving object tracking algorithm evaluation in autonomous surveillance system
PublicationResults of evaluation of video object tracking algorithm being a part of an autonomous surveillance system are presented. The algorithm was investigated employing a set of benchmarks recorded locally. The precision of object detection, evaluated with such metrics as fragmentation, object area recall and object precision, is in focus. The experiments aimed at examining the detection quality using various object detection algorithm...
-
Application of Web-GIS and Cloud Computing to Automatic Satellite Image Correction
PublicationRadiometric calibration of satellite imagery requires coupling of atmospheric and topographic parameters, which constitutes serious computational problems in particular in complex geographical terrain. Successful application of topographic normalization algorithms for calibration purposes requires integration of several types of high-resolution geographic datasets and their processing in a common context. This paper presents the...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Book Review
PublicationActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
A model of stealth maritime object having some innovative solutions concerning the object form, structure and materials.
Open Research DataThe aim of the project is to work out a model of the stealth maritime object which will have innovative solutions concerning the object form, structure and materials. These solutions should enable a modification of combinations of the object features defining the object stealth characteristics (difficulty of the object detection in the water). It is...
-
Psychophysiological strategies for enhancing performance through imagery – skin conductance level analysis in guided vs. self-produced imagery
PublicationAthletes need to achieve their optimal level of arousal for peak performance. Visualization or mental rehearsal (i.e., Imagery) often helps to obtain an appropriate level of activation, which can be detected by monitoring Skin Conductance Level (SCL). However, different types of imagery could elicit different amount of physiological arousal. Therefore, this study aims: (1) to investigate differences in SCL associated with two instructional...
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration
PublicationThis study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublicationThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Study on the Coastline Evolution in Sopot (2008–2018) Based on Landsat Satellite Imagery
PublicationThe coastline is the boundary between the water surface in a reservoir or watercourse and the land, which is characterised by high instability and functional diversity. For these reasons, research on coastal monitoring has been conducted for several decades. Currently, satellite images performed with synthetic aperture radars (SARs) are used to determine its course and variability together with high-resolution multispectral imagery...
-
Automatic detection of abandoned luggage employing a dual camera system
PublicationA system for automatic detection of events using a system of fixed and PTZ (pan-tilt-zoom) cameras is described. Images from the fixed camera are analyzed by means of object detection and tracking. Event detection system uses a set of rules to analyze data on the tracked moving objects and to detect defined events. A PTZ camera is used to obtain a detailed view of a selected object. A procedure for conversion between the pixel...
-
Automated Parking Management for Urban Efficiency: A Comprehensive Approach
PublicationEffective parking management is essential for ad-dressing the challenges of traffic congestion, city logistics, and air pollution in densely populated urban areas. This paper presents an algorithm designed to optimize parking management within city environments. The proposed system leverages deep learning models to accurately detect and classify street elements and events. Various algorithms, including automatic segmentation of...
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublicationDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublicationThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Podstawy uczenia głębokiego 2022
e-Learning Courses{mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}