displaying 1000 best results Help
Search results for: FINITE ELEMENT METHOD (FEM)
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublicationIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
A three-dimensional periodic beam for vibroacoustic isolation purposes
PublicationThis paper presents results of investigations on a three-dimensional (3-D) isotropic periodic beam. The beam can represent a vibroacoustic isolator of optimised dynamic characteristics in the case of its longitudinal, flexural and torsional behaviour. The optimisation process concerned both the widths as well as the positions of particular frequency band gaps that are present in the frequency spectrum of the beam. Since the dynamic...
-
Influence of Added Water Mass on Ship Structure Vibration Parameters in Virtual and Real Conditions
PublicationModelling of ship structures in a virtual environment is now standard practice. Unfortunately, many engineers forget to consideri the influence of added water on the frequency values and the amplitude of natural vibrations. The article presents the effect of water damping on the frequency values of the individual natural vibration modes. The tests were carried out in two stages. First, the mentioned values were determined using...
-
Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft
PublicationThis paper presents a prototype of high speed brushless synchronous generators (BSG) design for the application in autonomous electric power generation systems (e.g., airplane power grid). Commonly used salient pole field of the main generator part of BSG was replaced with a prototype non-salient pole field. The main objective of the research is an investigation into the advantages and disadvantages of a cylindrical field of the...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublicationThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
Laboratory Determination of Burger's Model Parameters for Visco-elastic Analysis of Road Pavement Materials
PublicationBurger's Model is one of those models that describes performance of asphalt mixtures. Its parameters can be used in road construction analysis based on visco-elastic properties in wide variety of temperatures using dedicated programs (e.g. Veroad) or in Finite Element Method (FEM). Parameters of Burger's Model can be used for example in prediction of low temperature cracking in low winter temperatures or permanent deformation...
-
THE CONCEPT OF MODELING OF SNOW IMPACT ON THE STRUCTURE OF THE SUSPENDED TAURON ARENA ROOF IN CRACOW
PublicationThe article presents studies and numerical simulations on modeling snow influence on TAURON ARENA suspended roof structure in Cracow. The scope of work includes experimental tests, functions solutions taking into account various cases of snow impact according to PN and EC, as well as numerical simulations for the sport and entertainment arena in the Czyzyny district. The FEM roof structure model developed in the SOFISITK software...
-
Behaviour of steel columns under impact
PublicationOne of import issues related to the idea of sustainable society is the safety of civil engineering structures. The safety and reliability of steel structures under impact loading is among a number of different aims during the design state. The aim of this paper is to present the results of investigation focused on dynamic behaviour of steel columns under impact loading. Modal and transient dynamic analyses using Finite Element...
-
The effect of a belt position in the spindle driving system on critical rotational speeds
PublicationThe aim of this paper was to examine how the belt pulley position affects critical rotational speeds of the modernized spindle of the sliding table saw Fx3. Methodology of determination of critical rotational speeds of the spindle in a function of the spindle design features and its driving system is presented. Spindles in these kind of machine tools are mainly driven with V-belts, and the pulleys on the spindles might be positioned:...
-
Numerical analysis of mechanical properties of an infill structure used in 3D printings
PublicationThe paper presents results of a numerical analysis focused on an identification of mechanical properties of an element created by using Fused Deposition Modelling additive manufacturing technique (FDM). There is presented a description of technology of the 3D printing, numerical model created by using the finite element method (FEM), as well as some problems referred to estimation of the mechanical properties of the printout. The...
-
MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis
Publication -
Numerical Methods
e-Learning CoursesNumerical Methods: for Electronics and Telecommunications students, Master's level, semester 1 Instructor: Michał Rewieński, Piotr Sypek Course description: This course provides an introduction to computational techniques for the simulation and modeling of a broad range of engineering and physical systems. Concepts and methods discussed are widely illustrated by various applications including modeling of integrated circuits,...
-
Application of probabilistic tools to extend load test design of bridges prior to opening
PublicationLoad tests of bridges are widely performed in a large number of countries. Deterministic comparison of measurement results to the theoretical, FEM (finite element method)-based outcomes with possible further calibration is mostly applied. Sometimes, the data collected in the tests are also used to calibrate the reliability factors of bridge structures or their components. This work proposes to complement the stage of the load test...
-
Detection of Delamination in Laminate Wind Turbine Blades Using One-Dimensional Wavelet Analysis of Modal Responses
PublicationThis paper demonstrates the effectiveness of a nondestructive diagnostic technique used to determine the location and size of delamination in laminated coatings of wind turbine blades. This is realized based on results of numerical and experimental investigations obtained by the use of the finite element method (FEM) and laser scanning vibrometry (LSV). The proposed method is based on the one-dimensional continuous wavelet transform...
-
TB11 test for short w-beam road barrier
PublicationFEM (Finite Element Method) is well-suited and widely used tool for simulating a range of phenomena: from these with simple and static behaviour, up to those complicated, highly nonlinear and involving many contacts. In present paper we use one of the advantages of FEM: parametric study could be easily performed and is more economical than series of in-situ tests. If recommended practices is carefully followed, results obtained...
-
Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray lCT images
PublicationThe paper presents results of two-dimensional meso-scale simulations of fracture in notched concrete beams subjected to three-point bending test. Concrete was assumed as a 4-phase material composed of aggregate grains placed in the cement matrix, interfacial transitional zones (ITZs) and macro-voids. The particle distribution was taken from real concrete beams on the basis of X-ray lCT images. Comprehensive numerical analyses were carried...
-
On implementation of fibrous connective tissues’ damage in Abaqus software
PublicationConnective fibrous tissues, such as tendons and ligaments, in humans and animals exhibit hyperelastic behaviour. The constitution of the material of these tissues is anisotropic due to the presence of the collagen fibres, where one family of fibres is the typical case. Traumatic events and/or aging may sometimes lead to the damage of the tissue. The study of motion of affected joints or limbs is usually not permitted in vivo. This...
-
Wave Frequency Effects on Damage Imaging in Adhesive Joints Using Lamb Waves and RMS
PublicationStructural adhesive joints have numerous applications in many fields of industry. The gradual deterioration of adhesive material over time causes a possibility of unexpected failure and the need for non-destructive testing of existing joints. The Lamb wave propagation method is one of the most promising techniques for the damage identification of such connections. The aim of this study was experimental and numerical research on...
-
An analytical four-layer horizontal electric current dipole model for analysing underwater electric potential in shallow seawater
PublicationThe paper presents a new analytical four‑layer (air–water–bottom–non‑conductive layer) horizontal electric dipole model which allows an accurate approximation of ship’s Underwater Electric Potential (UEP) from a sufficient depth in shallow coastal marine waters. The numerical methods, usually Finite Element Method (FEM) or Boundary Elements Method (BEM), are typically used to estimate the electric field and the distribution of...
-
Size effect in concrete beams under bending – influence of the boundary layer and the numerical description of cracks
PublicationIn the paper the size effect phenomenon in concrete is analysed. The results of numerical simulations of using FEM on geometrically similar un-notched and notched concrete beams under bending are presented. Concrete beams of four different sizes and five different notch heights under three-point bending test were simulated. In total 18 beams were analysed. Two approaches were used to describe cracks in concrete. First, eXtended...
-
Nonlinear dynamic analysis of the pure “buckling” mechanism during blow-out trauma of the human orbit
PublicationConsidering the interplay between orbital bones and intraorbital soft tissues, commonly accepted patterns of the blow-out type of trauma within the human orbit require more thorough investigation to assess the minimal health-threatening impact value. Two different three-dimensional finite element method (FEM) models of the human orbital region were developed to simulate the pure “buckling” mechanism of orbital wall fracture in...
-
Numerical investigations of discrete crack propagation in Montevideo splitting test using cohesive elements and real concrete micro-structure
PublicationThe paper is aimed at accurately predicting the discrete fracture process in concrete specimens under complex stress states in two dimensional (2D) simulations. Plain concrete specimens subjected to Montevideo splitting test (MVD) were used for consideration due to non-negligible shear stresses impact in this type of test. In order to reflect the heterogeneous nature of the concrete, the meso-structure of the samples was included...
-
Nondestructive Testing of the Miter Gates Using Various Measurement Methods
PublicationWhen any problems related to civil engineering structures appear, identifying the issue through the usage of only one measuring method is difficult. Therefore, comprehensive tests are required to identify the main source. The strains and displacement measurements, as well as modal identification, are widely used in the nondestructive testing of structures. However, measurements are usually carried out at several points and confirm...
-
Validation of Hydraulic Mechanism during Blowout Trauma of Human Orbit Depending on the Method of Load Application
PublicationThe more we know about mechanisms of the human orbital blowout type of trauma, the better we will be able to prevent them in the future. As long as the buckling mechanism’s veracity is not in doubt, the hydraulic mechanism is not based on equally strong premises. To investigate the correctness of the hydraulic mechanism’s theory, two different methods of implementation of the hydraulic load to the finite element method (FEM) model...
-
Fracture Energy of Bonded Joints with 2D Elastic Adhesive Layer
PublicationWhen bonded joint is subjected to mode I fracture loading, the adhesive joints analytical solutions treats the adhesive layer, usually, as not existing or 1D Hooke elastic layer. In the case of 1D elastic layer, represented as Hookes spring element, is acting, only, in direction contrary to the applied load. Basing on the information yielded from sensitive laser profilometry technique, where deflections of bonded part of the joint...
-
Why is TASK Quarterly a Significant Journal to Publish Your Article? —A Bibliometric Analysis of a Scientific and Technical Journal
PublicationA bibliometric analysis of TASK Quarterly in the years 1997-2021 in terms of various bibliometric indicators was performed to celebrate the 25th anniversary of the publication of the first issue of the journal. The number of publications and citations increased over the mentioned span of years. The leading countries in terms of the greatest number of papers published in TASK Quarterly are Poland, Italy, Germany, Ukraine, USA and...
-
Numerical Modelling of Connections Between Stones in Foundations of Historical Buildings
PublicationThe aim of this paper is to analyse the behaviour of old building foundations composed of stones (the main load-bearing elements) and mortar, based on numerical analysis. Some basic aspects of historical foundations are briefly discussed, with an emphasis on their development, techniques, and material. The behaviour of a foundation subjected to the loads transmitted from the upper parts of the structure is described...
-
Validation Process for Computational Model of Full-Scale Segment for Design of Composite Footbridge
PublicationExperimental tests and numerical simulations of a full-scale segment of a foot and cycle bridge made of polymer composites are presented in the paper. The analysed structure is made of sandwich panels, which consist of glass fibre reinforced polymer (GFRP) multi-layered laminate faces and a PET foam (obtained from recycling) core. The dimensions of the segment cross-section are the same as for the target footbridge; however, span...
-
Image-based numerical modeling of the tensile deformation behavior and mechanical properties of additive manufactured Ti–6Al–4V diamond lattice structures
PublicationThis work concerns the numerical modeling of the deformation process and mechanical properties of structures obtained by the additive method laser power bed fusion (LPBF). The investigation uses diamond structures of Ti–6Al–4V titanium implantation alloy with various relative densities. To model the process of tensile deformation of the materials, geometric models were used, mapping the realistic shape of the examined structures....
-
Experimental and Numerical Investigation of Tensile and Flexural Behavior of Nanoclay Wood-Plastic Composite
PublicationIn this study, the effect of wood powder and nanoclay particle content on composites’ mechanical behavior made with polyethylene matrix has been investigated. The wood flour as a reinforcer made of wood powder was at levels of 30, 40, and 50 wt.%, and additional reinforcement with nanoclay at 0, 1, 3, and 5 wt.%. Furthermore, to make a composite matrix, high-density polyethylene was used at levels of 70, 60, and 50% by weight....
-
Propagation Characteristics of Partial Discharges in an Oil-Filled Power Transformer
PublicationPower transformers are among the most important assets in the power transmission and distribution grid. However, they suffer from degradation and possible faults causing major electrical and financial losses. Partial discharges (PDs) are used to identify the insulation health status and their degradation level. PDs are incipient, low-magnitude faults caused by localized dielectric breakdown. Those activities emit signals in many...
-
Shear fracture of longitudinally reinforced concrete beams under bending using Digital Image Correlation and FE simulations with concrete micro-structure based on X-ray micro-computed tomography images
PublicationThe paper presents experimental and numerical investigations of the shear fracture in rectangular concrete beams longitudinally reinforced with steel or basalt bar under quasi-static three point bending. Shear fracture process zone formation and development on the surface of beams was investigated by Digital Image Correlation (DIC) whereas thorough analyses of 3D material micro-structure, air voids, width and curvature of shear...
-
Buckling resistance of a metal column in a corrugated sheet silo - experiments and non-linear stability calculations
PublicationThe results of experimental and numerical tests of a single corrugated sheet silo column’s buckling resistance are presented in this study. The experiments were performed in a real silo with and without bulk solid (wheat). A very positive impact of the bulk solid on the column buckling resistance occurred. The experimental results were first compared to the buckling resistance calculated by Eurocode 3 formulae. The comparison revealed that...
-
Krzysztof Nyka dr hab. inż.
PeopleKrzysztof Nyka, received MSc (1986) PhD (2002) and DSc (2020) degrees in telecommunication and electrical engineering from the Faculty of Electronics, Telecommunications and Informatics (ETI) of Gdańsk University of Technology (GUT), Poland. He is currently an Associate Professor at the Department of Microwaves and Antenna Engineering, Faculty of ETI, GUT. Before his academic career, he worked for the electronic industry (1984-1986). Research...
-
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
PublicationThis article introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3-D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of additive manufacturing (AM) is to be exploited in the fabrication of RF and microwave...
-
THREE-DIMENSIONAL numerical investigation of MHD nanofluid convective heat transfer inside a CUBIC porous container with corrugated bottom wall
PublicationSimultaneous use of porous media and nanofluid as a heat transfer improvement method has recently captivated a great deal of attention. The heat transfer and entropy production of the Cu-water nanofluid inside a cubic container with a heated bottom wavy wall and an elliptic inner cylinder were numerically analyzed in this study. The container is partitioned into two sections: the left side is filled with permeable media and...
-
Experimental and Numerical Study on Dynamics of Two Footbridges with Different Shapes of Girders
PublicationThe paper presents the experimental and numerical results of the dynamic system identification and verification of the behavior of two footbridges in Poland. The experimental part of the study involved vibration testing under different scenarios of human-induced load, impulse load, and excitations induced by vibration exciter. Based on the results obtained, the identification of dynamic parameters of the footbridges was performed...
-
FEM approach to modeling of an irregular trabecular structure
PublicationThe aim of the study is elaboration of a method for creating irregular scaffolds that can be used to model the behaviour of trabecular bone placed in the proximal epiphysis of the femur. The scope of the study encompasses creating six numerical models of irregular scaffolds (two solid irregular scaffolds, two shell irregular scaffolds and two shell irregular scaffolds with fortification) and performing numerical analysis of the...
-
Mechatronic Design Towards Investigation of the Temporo-Mandibular Joint Behaviour
PublicationA significant problem of the temporo-mandibular joint (TMJ) research is lack of data concerning geometry and position of TMJ discs. It leads to necessity of developing a driving method of the process optimization, which is based on chosen techniques of mechatronic design. In particular, the latter concerns a technique of experimentally supported virtual prototyping. On this stage, the research is characterized by well-verified...
-
Tensile validation tests with failure criteria comparison for various GFRP laminates
PublicationThe paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series...
-
SFEM Analysis of Beams with Scaled Lengths including Spatially Varying and Cross-Correlated Concrete Properties
PublicationThis paper presents the results obtained for plain concrete beams under four-point bending with spatially varying material properties. Beams of increasing length but constant depth were analyzed using the stochastic finite element method. Spatial fluctuation of a uniaxial tensile strength, fracture energy and elastic modulus was defined within cross-correlated random fields. The symmetrical Gauss probability distribution function...
-
Influence of the notch rounding radius on estimating the elastic notch stress concentration factor in a laser welded tee joint
PublicationIn recent years an increased interest of industry in sandwich-type metal structures can be observed. These structures consist of thin plates of 2.5 mm in thickness separated by stiffeners of different shapes and forms. Welds joining the plates and stiffeners are made on the outer side of the plates using laser welding technique. A locally focused source of heat causes the plate to melt creating a very narrow and elongated joint....
-
Experimental and Numerical Investigation of Mechanical Properties of Lightweight Concretes (LWCs) with Various Aggregates
PublicationHigh requirements for the properties of construction materials and activities directed at environment protection are reasons to look for new solutions in concrete technology. This research was directed at solutions affecting the reduction of energy consumption and CO2 emissions. The use of lightweight concretes (LWCs) allows one to meet both conditions at the same time. The purpose of the research presented in this paper was to...
-
NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA
PublicationAs a structure degrades some changes in its dynamical behavior can be observed, and inversely, observation and evaluation of these dynamical changes of the structure can provide information of structural state of the object. Testing of the real structure, besides of being costly, can cover only limited working states. It is particularly considerable in case of hardly accessible, and randomly/severely dynamically loaded offshore...
-
The effect of fishing basin construction on the behaviour of a footbrdge over the port channel
PublicationThe paper analyses possible causes of failure of the rotating footbridge over the Ustka port channel. In July, 2015, strange behaviour of this object was observed in the form of excessive vibrations of bridge platform suspension rods, with the accompanying acoustic effects. A preliminary geotechnical analysis has revealed that this destructive effect was caused by the nearby construction works, namely construction of a fishing...
-
Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls
PublicationFluid–structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this...
-
FEM and experimental investigations of concrete temperature field in the massive stemwall of the bridge abutment
PublicationThe paper deals with the prediction of early-age concrete temperature of cast-in-place stemwall of the bridge abutment. The considered object is an arch bridge located in Gda´nsk. In the case of massive structures, it is particularly important to not exceed the temperature difference between the core and the concrete surface. Too high temperature gradient generates an increase in thermal stresses, what could be the reason of exceeding...
-
On mechanics of piezocomposite shell structures
PublicationThis study presents an original and novel investigation into the mechanics of piezo-flexo-magneto-elastic nanocomposite doubly-curved shells (PFMDCSs) and the ability to detect the lower and higher levels of electro-magnetic fields. In this context, by utilizing the first-order shear deformation shell model, stresses and strains are acquired. By imposing Hamilton's principle and the von Kármán approach, the governing equations...
-
Strength analysis of a large-size supporting structure for an offshore wind turbine
PublicationThe offshore wind power industry is the branch of electric energy production from renewable sources which is most intensively developed in EU countries. At present, there is a tendency to install larger-power wind turbines at larger distances from the seashore, on relatively deep waters. Consequently, technological solutions for new supporting structures intended for deeper water regions are undergoing rapid development now. Various...
-
Multidisciplinary approach to the assessment of historic structures based on the case of a masonry bridge in Galicia (Spain)
PublicationThe paper presents a general method to evaluate a masonry structure with a complex geometry and unknown material properties. This multidisciplinary approach integrates close range digital photogrammetry,ground probing radar (GPR) and finite elements analysis (FEM) to analyse a masonry bridge. The resulting information from photogrammetry and radar is applied to define a 3D model, which is then used to simulate the behaviour of...