Filters
total: 1970
-
Catalog
- Publications 1534 available results
- Journals 70 available results
- Conferences 110 available results
- People 133 available results
- Projects 1 available results
- Research Teams 1 available results
- e-Learning Courses 80 available results
- Events 19 available results
- Open Research Data 22 available results
displaying 1000 best results Help
Search results for: sztuczna inteligencja
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Design and optimisation of combinational digital circuits using modified evolutionary algorithm.Projektowanie i optymalizacja kombinacyjnych układów cyfrowych przy użyciu zmodyfikowanego algorytmu ewolucyjnego.
PublicationW pracy przedstawiono możliwości projektowania i optymalizacji układów kombinacyjnych przy użyciu zmodyfikowanych algorytmów ewolucyjnych. Modyfikacja algorytmów polega na wprowadzeniu chromosomów wielowarstwowych i operatorów działających na nich. Wyniki projektowania czterech układów kombinacyjnych uzyskanych uzyskane tą metodą porównano z następującymi metodami opisanymi w literaturze jak: Mapy Karnaugh, metoda Quine-McCluskey...
-
Projektowanie symetryzatorów planarnych dla pasma UWB z wykorzystaniem sztucznych sieci neuronowych
PublicationW pracy zaprezentowano nową metodę projektowania planarnych symetryzatorów szerokopasmowych, wykorzystującą sztuczne sieci neuronowe oraz zasady modelowania elektromagnetycznego. Metoda zakłada wykorzystanie projektu wzorcowego, jego przeskalowanie dla nowego podłoża z wykorzystaniem zasad modelowania elektromagnetycznego oraz optymalizację końcową w oparciu o odpowiednio nauczoną sieć neuronową. Poprawność działania algorytmu zweryfikowano...
-
Inteligentne systemy pomiarowe / Smart metering [SDW 2023/24]
e-Learning CoursesProwadzący: dr inż. Andrzej Augusiak dr inż. Marcinem Jaskólski Terminy realizacji: pierwsze spotkanie online: 13.04 od 09.30 do 12:00 wykład drugie spotkanie online: 14.04 od 09.30 do 12:00 trzecie spotkanie online: 27.04 od 09.30 do 12:00 wykład czwarte spotkanie online: 28.04 od 09.30 do 12:00 Celem zajęć jest poszerzenie rozumienia ryzyk związanych z technologią oraz przedstawienie koncepcji...
-
A note on the applications of artificial intelligence in the hospitality industry: preliminary results of a survey
PublicationIntelligent technologies are widely implemented in different areas of modern society but specific approaches should be applied in services. Basic relationships refer to supporting customers and people responsible for services offering for these customers. The aim of the paper is to analyze and evaluate the state-of-the art of artificial intelligence (AI) applications in the hospitality industry. Our findings show that the major...
-
Sensors and System for Vehicle Navigation
PublicationIn recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...
-
Towards the 4th industrial revolution: networks, virtuality, experience based collective computational intelligence, and deep learning
PublicationQuo vadis, Intelligent Enterprise? Where are you going? The authors of this paper aim at providing some answers to this fascinating question addressing emerging challenges related to the concept of semantically enhanced knowledge-based cyber-physical systems – the fourth industrial revolution named Industry 4.0.
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublicationCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Artificial Neural Networks for Comparative Navigation
Publication -
Insights in microbiotechnology: 2022.Editorial
PublicationThis Research Topic serves as an invaluable resource for readers interested in staying updated with the latest progress and developments in the field of microbiotechnology. It spotlights the innovative research conducted by up-and-coming experts in the field, specifically emphasizing the transforming abilities of microorganisms that greatly influence the scientific community. The advent of multi-omic technologies has revolutionized microbiotechnology,...
-
Tacjana Niksa-Rynkiewicz dr inż.
PeopleTacjana Niksa-Rynkiewicz - doctor of science in the field of computer science (2011). The doctoral dissertation concerned issues related to the development of Artificial Intelligence methods, and more precisely the generalization of triangular norms in fuzzy neural systems. Currently, he is a researcher (assistant professor) at the Gdańsk University of Technology. He develops his skills and conducts research in the use of methods...
-
Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning
PublicationIn this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....
-
Machine Learning Techniques in Concrete Mix Design
PublicationConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
Production planning and control methods in the intelligent manufacturing systems
PublicationNiniejszy rozdział prezentuje zagadnienia związane z planowaniem i sterowaniem wytwarzaniem w kontekście budowy i działania inteligentnych systemów produkcyjnych (ISP). Architektura ISP, będąca rozwinięciem elastycznych systemów produkcyjnych, integruje systemy wspomagania decyzji ze strukturami bazodanowymi oraz dodatkowymi modułami komunikacyjnymi. Systemy wspomagania decyzji budowane są w oparciu o mechanizmy tzw. inteligencji...
-
Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings
PublicationThe paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...
-
How high-tech solutions support the fight against IUU and ghost fishing: a review of innovative approaches, methods, and trends
PublicationIllegal, Unreported, and Unregulated fishing is a major threat to human food supply and marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of the fight against this problem dates since the early 2000s. From that time, a number of approaches and methods have been developed and reported....
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Rozdział 4. Cieplno-przepływowe relacje diagnostyczne ustabilizowanych cieplnie bloków energetycznych wykorzystujące sztuczne sieci neuronowe (SSN)
PublicationPodano przykłady relacji diagnostycznych budowanych dla bloków energetycznych pracujących w warunkach stabilizacji cieplnej. Należą one do metod off-line. Dobrze sprawdzają się w nich sztuczne sieci neuronowe. Przy modułowej strukturze relacji diagnostycznych wykorzystywane są z powodzeniem SSN zarówno z ciągłymi jak i skokowymi funkcjami przejścia, w zależności od oczekiwanego wyniku obliczeń neuronowych.
-
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
PublicationModern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimizationand model prediction. The effective utilization of ML techniques for the development and scaling up of renewable energy systemsneeds a high degree of accountability. However, most of the ML approaches currently in use are termed black box since their work isdifficult to comprehend. Explainable artificial intelligence (XAI)...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublicationAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Importance of artificial intelligence to support the process of anaerobicdigestion of kitchen waste with bioplastics / Znaczenie sztucznej inteligencji we wspomaganiu procesu beztlenowej fermentacji odpadów kuchennych zawierających bioplastiki
PublicationArtificial intelligence (AI) and machine learning were used to obtain more effective methods for conducting the digestion process and achieving final products. Data acquisition was carried out by an automatic monitoring and anal. research. The knowledge describing the anaerobic digestion process was summarized in the form of rules: IF (premise) THEN (conclusion). The compiled set of rules created a knowledge base of the expert...
-
Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data
PublicationThe field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...
-
Data Domain Adaptation in Federated Learning in the Breast Mammography Image Classification Problem
PublicationWe are increasingly striving to introduce modern artificial intelligence techniques in medicine and elevate medical care, catering to both patients and specialists. An essential aspect that warrants concurrent development is the protection of personal data, especially with technology's advancement, along with addressing data disparities to ensure model efficacy. This study assesses various domain adaptation techniques and federated...
-
Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje
PublicationGeneratywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublicationWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublicationComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
Skuteczność systemu eksperckiego i sztucznej inteligencji w prognozowaniu upadłości firm
PublicationArtykuł ten dotyczy prognozowania upadłości przedsiębiorstw w Polsce. W artykule tym porównano dwie metody prognozowania zagrożeń firm upadłością: sztuczne sieci neuronowe oraz logikę rozmytą. W badaniach autor wykorzystał dane dotyczące 185 spółek notowanych na Warszawskiej Giełdzie Papierów Wartościowych. Populacja ta została podzielona na próbę uczącą i testową. Każde z analizowanych przedsiębiorstw opisanych zostało za pomocą...
-
Algorytmy ewolucyjne w projektowaniu sieci MPLS
PublicationNiniejszy artykuł opisuje zrealizowane narzędzie, które umożliwia projektowanie sieci MPLS za pomocą Algorytmów Ewolucyjnych. Narzędzie to generuje ścieżki i optymalizuje alokację na nich przepływności żądań zapotrzebowań z uwzględnieniem klas obsługi strumieni ruchu z gwarancją zróżnicowanego QoS. Może także wybierać ścieżki do alokacji spośród danych wejściowych tak, aby wykorzystanie sieci było optymalne. Narzędzie to zostało...
-
Assessing the attractiveness of human face based on machine learning
PublicationThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Predicting bankruptcy with the use of macroeconomic variables
PublicationRegarding the current global financial crisis, the firms can expect the increased uncertainty of their existence. The relevant literature includes extensive studies on bankruptcy prediction. Studies show that the most popular method used for prediction of firms' failures are discriminant analyses (30,3% of all models), then logit and probit models (21,3%), which all three are parametric models. The nature, the structure of the...
-
Algorytmy genetyczne w wielokryterialnej optymalizacji obserwatorów detekcyjnych.
PublicationW rozdziale przedstawia się możliwości zastosowania podejścia genetycznego do zagadnień wielokryterialnej optymalizacji w przestrzeniach wielowymiarowych z wykorzystaniem koncepcji optymalności w sensie Pareto. Jako przykład ilustrujący rozważane podejście daje się zadanie syntezy obserwatorów stanu służących wykrywaniu błędów występujących w układzie sterowania bezzałogowego statku latającego oraz w układzie napędowym jednostki...
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Multi-criterion decision making in distributed systems by quantum evolutionary algorithms
PublicationDecision making by the AQMEA (Adaptive Quantum-based Multi-criterion Evolutionary Algorithm) has been considered for distributed computer systems. AQMEA has been extended by a chromosome representation with the registry of the smallest units of quantum information. Evolutionary computing with Q-bit chromosomes has been proofed to characterize by the enhanced population diversity than other representations, since individuals represent...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublicationOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublicationIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France
PublicationCurrent Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...
-
Wpływ ruchu pojazdów ciężarowych na zniszczenia domów zlokalizowanych w pobliżu dróg przejazdowych
PublicationW niniejszym artykule przestawiono problem występowania drgań w budynkach, spowodowanych poruszającymi się pojazdami oraz ideę rozwiązania problemu pracochłonnych i kosztownych pomiarów takiego zjawiska. Autorzy starają się ukazać czynniki mające wpływ na wielkość drgań w świetle obowiązujących przepisów i norm. Główny wysiłek skupiają na ich pomiarze i interpretacji otrzymanych wyników w świetle propozycji budowy aplikacji wykorzystującej...
-
The Implementation of Fuzzy Logic in Forecasting Financial Ratios
PublicationThis paper is devoted to the issue of forecasting financial ratios. The objective of the conducted research is to develop a predictive model with the use of an innovative methodology, i.e., fuzzy logic theory, and to evaluate its effectiveness. Fuzzy logic has been widely used in machinery, robotics and industrial engineering. This paper introduces the use of fuzzy logic for the financial analysis of enterprises. While many current...
-
Rafał Łangowski dr inż.
PeopleRafał Łangowski received the M.Sc. and the Ph.D. degrees (Hons.) in control engineering from the Faculty of Electrical and Control Engineering at the Gdańsk University of Technology in 2003 and 2015, respectively. From 2007 to 2014, he held the specialist as well as manager positions at ENERGA, one of the biggest energy enterprises in Poland. He is currently an Assistant Professor with the Department of Intelligent Control and...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublicationVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publication -
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublicationThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Nina Rizun dr
PeopleNina Rizun is an assistant professor at the Faculty of Management and Economics at the Gdańsk University of Technology. In October 1999 she obtained a PhD degree in technical sciences in the Faculty of Enterprise Economy and Production Organization, National Mining Academy, Dnipropetrovsk, Ukraine. PhD thesis title: Development of Complex Subsystem of the Organization and Planning of Mining and Transport Processes. In the years...