Search results for: INTERLANGUAGE PHONEME DIFFERENCES, SIMILARITY MATRICES, CONVOLUTIONAL NEURAL NETWORK
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Hotspot of human verbal memory encoding in the left anterior prefrontal cortex
PublicationBackground: Treating memory and cognitive deficits requires knowledge about anatomical sites and neural activities to be targeted with particular therapies. Emerging technologies for local brain stimulation offer attractive therapeutic options but need to be applied to target specific neural activities, at distinct times, and in specific brain regions that are critical for memory formation. Methods: The areas that are critical...
-
Video of LEGO bricks on conveyor belt - Special Brics
Open Research DataThe set contains videos of LEGO bricks (special bricks, with additional connectors etc.) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - Wide Brics
Open Research DataThe set contains videos of LEGO bricks (wide bricks, with each side having more than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Video of LEGO bricks on conveyor belt - minifigures, animals, plants and accessories
Open Research DataThe set contains videos of LEGO bricks (minifigures, animals, plants and accessories) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera...
-
Video of LEGO bricks on conveyor belt - Narrow Brics
Open Research DataThe set contains videos of LEGO bricks (narrow bricks, with on side no wider than 1 stud) moving on a white conveyor belt. The videos were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary...
-
Monitoring of absorptive model biogas purification process using sensor matrices and gas chromatography
PublicationThis study examined the process of purifying model biogas using a new type of absorbent based on a Deep Eutectic Solvent (DES) and a commercially available absorbent (Genosorb) to remove acetone, toluene, and cyclohexane. The main aim of the research was to control the purification efficiency using gas chromatography (GC) and an alternative method based on sensor matrices (SM). As a result of comparing the multidimensional SM signals...
-
Using Statistical Methods to Estimate The Worst Case Response Time of Network Software Running on Indeterministic Hardware Platforms
PublicationIn this paper we investigate whether the statistical Worst Case Execution Time (WCET) estimation methods devised for embedded platforms can be successfully applied to find the Worst Case Response Time (WCRT) of a network application running on a complex hardware platform such as a contemporary commercial off-the-shelf (COTS) system. Establishing easy-to-use timing validation techniques is crucial for real-time applications and...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublicationThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Traffic Type Influence on Performance of OSPF QoS Routing
PublicationFeasibility studies with QoS routing proved that the network traffic type has influence on routing performance. In this work influence of self-similar traffic for network with DiffServ architecture and OSPF QoS routing has been verified. Analysis has been done for three traffic classes. Multiplexed On-Off model was used for self-similar traffic generation. Comparison of simulation results was presented using both relative and non-relative...
-
Comparison of selected electroencephalographic signal classification methods
PublicationA variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...
-
Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models
PublicationNon-contact evaluation of vital signs has been becoming increasingly important, especially in light of the COVID- 19 pandemic, which is causing the whole world to examine people’s interactions in public places at a scale never seen before. However, evaluating one’s vital signs can be a relatively complex procedure, which requires both time and physical contact between examiner and examinee. These re- quirements limit the number...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublicationPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
Comparison of centralized and decentralized preemption in MPLS networks
PublicationPreemption is one of the crucial parts of the traffic engineering in MPLS networks. It enables allocation of high-priority paths even if the bandwidth on the preferred route is exhausted. This is achieved by removing previously allocated low-priority traffic, so as enough free bandwidth becomes available. The preemption can be performed either as a centralized or a decentralized process. In this article we discuss the differences...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublicationAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Vehicle classification based on soft computing algorithms
PublicationExperiments and results regarding vehicle type classification are presented. Three classes of vehicles are recognized: sedans, vans and trucks. The system uses a non-calibrated traffic camera, therefore no direct vehicle dimensions are used. Various vehicle descriptors are tested, including those based on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images...
-
LSTM-based method for LOS/NLOS identification in an indoor environment
PublicationDue to the multipath propagation, harsh indoor environment significantly impacts transmitted signals which may adversely affect the quality of the radiocommunication services, with focus on the real-time ones. This negative effect may be significantly reduced (e.g. resources management and allocation) or compensated (e.g. correction of position estimation in radiolocalisation) by the LOS/NLOS identification algorithm. This paper...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublicationIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
The trajectories of the financial crisis of companies at risk of bankruptcy
PublicationThis article concerns the assessment of the trajectory of the collapse of enterprises in Central Europe. The author has developed a model of a Kohonen artificial neural network. This model was used to determine 6 different classes of risk and was allowed to graphically determine the 5- to 10-year trajectory of going bankrupt. The study used data on 140 companies listed on the Warsaw Stock Exchange. This population was divided into...
-
Direct electrical stimulation of the human brain has inverse effects on the theta and gamma neural activities
PublicationObjective: Our goal was to analyze the electrophysiological response to direct electrical stimulation (DES) systematically applied at a wide range of parameters and anatomical sites, with particular focus on neural activities associated with memory and cognition. Methods: We used a large set of intracranial EEG (iEEG) recordings with DES from 45 subjects with electrodes...
-
Optimized Computational Intelligence Model for Estimating the Flexural Behavior of Composite Shear Walls
PublicationThis article presents a novel approach to estimate the flexural capacity of reinforced concrete-filled composite plate shear walls using an optimized computational intelligence model. The proposed model was developed and validated based on 47 laboratory data points and the Transit Search (TS) optimization algorithm. Using 80% of the experimental dataset, the optimized model was selected by determining the unknown coefficients of...
-
Study of Statistical Text Representation Methods for Performance Improvement of a Hierarchical Attention Network
PublicationTo effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches...
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Video of LEGO bricks on conveyor belt - wheels, tires and caterpillars
Open Research DataThe set contains videos of LEGO bricks (wheels, tires and caterpillars) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located...
-
The conducted immunity test of an AC adaptor in accordance with EMC standards
Open Research DataThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the ac adaptor PHILIPS DC power supply SBC 6654. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 150 kHz...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublicationThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Dekodowanie kodów iterowanych z użyciem sieci neuronowej
PublicationNadmiarowe kody iterowane są jedną z prostych metod pozyskiwania długich kodów korekcyjnych zapewniających dużą ochronę przed błędami. Jednocześnie, chociaż ich podstawowy iteracyjny dekoder jest prosty koncepcyjnie oraz łatwy w implementacji, to nie jest on rozwiązaniem optymalnym. Poszukując alternatywnych rozwiązań zaproponowano, przedstawioną w pracy, strukturę dekodera tego typu kodów wspomaganą przez sieci neuronowe. Zaproponowane...
-
Product diversification, relative specialisation and economic development: import-export analysis.
PublicationThis paper contributes to trade diversification literature by comparing changes in relative (i.e. assessed in comparison with world patterns) heterogeneity of import and export structures in the process of economic development. In particular, by focusing on the diversification of imports, we add a missing piece to already analysed export trends. We use highly disaggregated trade statistics (4963 product lines) for 163 countries...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublicationThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Zastosowanie sieci neuronowych do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu
PublicationDetekcja impulsów w odebranym sygnale radiowym, zwłaszcza w obecności silnego szumu oraz trendu, jest trudnym zadaniem. Artykuł przedstawia propozycje rozwiązań wykorzystujących sieci neuronowe do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu. Na potrzeby realizacji tego zadania zaproponowano dwie architektury. W pracy przedstawiono wyniki badań wpływu kształtu impulsu, mocy zakłóceń szumowych oraz trendu...
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublicationAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublicationNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublicationIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
The conducted immunity test of a power supply unit in accordance with EMC standards
Open Research DataThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 150 kHz to 230 MHz are...
-
Information retrieval with semantic memory model
PublicationPsycholinguistic theories of semantic memory form the basis of understanding of natural language concepts. These theories are used here as an inspiration for implementing a computational model of semantic memory in the form of semantic network. Combining this network with a vector-based object-relation-feature value representation of concepts that includes also weights for confidence and support, allows for recognition of concepts...
-
Modeling of traffic safety indictors on Polish national road network
PublicationAlthough decreased from 2001 to 2013, Poland’s road deaths improved at a slower rate than the rest of the EU, leaving Poland as one of the worst road safety performing countries in the EU. The national road network in Poland, despite the dynamic transformation and development, still does not conform to the EU safety standards. Similar situation exists in other EU countries, particularly those in Central and Eastern Europe. Safety...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublicationIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
Multipath routing for quality of service differentiation and network capacity optimization in broadband low-earth orbit systems
PublicationThis paper shows the importance of employing multiple different paths for routing in Inter-Satellite Link (ISL) networks in broadband Low-Earth Orbit (LEO) satellite systems. A theoretical analysis is presented and a routing concept is proposed to demonstrate three facts that make multipath routing especially important in broadband LEO networks: (1) differences in the propagation delays have a much greater impact on end-to-end...
-
Unsupervised Learning for Biomechanical Data Using Self-organising Maps, an Approach for Temporomandibular Joint Analysis
PublicationWe proposed to apply a specific machine learning technique called Self-Organising Maps (SOM) to identify similarities in the performance of muscles around human temporomandibular joint (TMJ). The performance was assessed by measuring muscle activation with the use of surface electromyography (sEMG). SOM algorithm used in the study was able to find clusters of data in sEMG test results. The SOM analysis was based on processed sEMG...