Publications
Filters
total: 338
Catalog Publications
Year 2022
-
Magnetic properties of α-KCoPO4 compound with a chiral polar crystal structure
PublicationWe have obtained polycrystalline samples of a metastable α variant of KCoPO4 by low temperature (350–400 °C) solid state metathesis reaction of potassium oxalate and ammonium cobalt orthophosphate. The material crystallizes in a polar chiral structure (sg. P63, no. 173). Measurements of magnetic properties reveal antiferromagnetic interactions and no ordering observed down to T = 1.9 K, well below the Weiss temperature |Θcw| =...
-
Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites
PublicationIn this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite....
-
MgPdSb─An Electron-Deficient Half-Heusler Phase
PublicationThe half-Heusler family consists of many semiconducting intermetallic compounds, virtually all of them having a valence electron count (VEC) of 18. We have studied an electron-deficient (VEC = 17) phase MgPdSb and its Pd-stuffed variant MgPd1.25Sb. The cubic F4̅3m crystal structure was confirmed by the Rietveld refinement of powder X-ray diffraction (XRD) data. The lattice parameter is a = 6.284 and 6.335 Å for MgPdSb and MgPd1.25Sb,...
-
Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy
PublicationThe effect of high-temperature oxidation at 850 C (10 h, 30 h, 100 h) and 900 C (10 h) on porous (30 % porosity) ferritic stainless steel (Fe22Cr) has been investigated using synchrotron tomographic microscopy, which allowed for visualisation, separation and quantitative analysis of the metallic core, closed pores, open pores and oxide scale phase. The same regions within the samples were investigated before and after oxidation...
-
Nanostructure of the laser-modified transition metal nanocomposites for water splitting
PublicationAlthough hydrogen is considered by many to be the green fuel of the future, nowadays it is primarily produced through steam reforming, which is a process far from ecological. Therefore, emphasis is being put on the development of electrodes capable of the efficient production of hydrogen and oxygen from water. To make the green alternative possible, the solution should be cost-efficient and well processable, generating less waste...
-
Negative Poisson’s ratio from pentagons: A new auxetic structure combining three different auxetic mechanisms
PublicationA novel class of two-dimensional auxetic structures based on the pentagon motif is proposed. Their mechanical properties are investigated by combining molecular mechanics simulations with a simple three-parameter mechanical model which assumes perfectly elastic behavior. It is predicted that the proposed structures – termed as double re-entrant honeycomb – may possess unique mechanical characteristics, which include complete and...
-
New approach for the synthesis of Ag3PO4-graphene photocatalysts
PublicationA facile and effective plasma sputtering method for the preparation of a visible light active photocatalyst - rhombic dodecahedral silver phosphate Ag3PO4 covered with nanographene (Ag3PO4-GR) with improved stability has been developed. Proposed method allows for the usage of readily available materials for nanographene sputtering and for easy scaling-up. The stability improvement, confirmed by visible light-induced phenol degradation...
-
New nanoadsorbent based on magnetic iron oxide containing 1,4,7,10-tetraazacyclododecane in outer chain (Fe3O4@SiO2-cyclen) for adsorption and removal of selected heavy metal ions Cd2+, Pb2+, Cu2+
PublicationMagnetic Fe3O4@SiO2-cyclen nanoparticles were prepared and used as adsorbent for Cd2+, Pb2+ and Cu2+ from aqueous solution removal process controlled with differential pulse anodic stripping voltammetry (DPASV) and hanging mercury drop electrode (HDME). Nanomaterial was synthesised in three-step process co-precipitation of Fe3O4 core, coating with silane and N-(3-(triethoxysilyl)propyl)-1,4,7,10-tetraazacyclododecane-1-carboxamide...
-
Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media
PublicationOrganic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest...
-
Novel composite of Zn/Ti-layered double hydroxide coupled with MXene for the efficient photocatalytic degradation of pharmaceuticals
PublicationIn the present study, a hybrid photocatalyst of Zn/Ti layered double hydroxide (LDH) coupled with MXene – Ti3C2 was synthesized for the first time and applied in photocatalytic degradation of acetaminophen and ibuprofen, two commonly present in the natural environment and prone to accumulate in the aquatic ecosystem pharmaceuticals. The effect of MXene content (0.5 wt%, 2.5 wt%, and 5 wt%) on the photocatalytic activity of LDH/MXene...
-
Pilot-Scale Studies of WO3/S-Doped g-C3N4 Heterojunction toward Photocatalytic NOx Removal
PublicationDue to the rising concentration of toxic nitrogen oxides (NOx) in the air, effective methods of NOx removal have been extensively studied recently. In the present study, the first developed WO3/S-doped g-C3N4 nanocomposite was synthesized using a facile method to remove NOx in air efficiently. The photocatalytic tests performed in a newly designed continuous-flow photoreactor with an LED array and online monitored NO2 and NO system...
-
Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose
PublicationPurpose Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. Materials and methods Six Composite Porous Matrices...
-
Possible quadrupole-order-driven commensurate-incommensurate phase transition in B20 CoGe
PublicationThe B20-type cobalt germanide CoGe was investigated by measuring the specific heat, resistivity, and 59Co nuclear magnetic resonance (NMR).We observed a phase transition at TQ = 13.7 K, evidenced by a very narrow peak of the specific heat and sharp changes of the nuclear spin-spin (T −1 2 ) and spin-lattice (T −1 1 ) relaxation rates. The fact that the entropy release is extremely small and the Knight shift is almost independent...
-
Praseodymium Orthoniobate and Praseodymium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties
PublicationIn this paper, the structural properties and the electrical conductivity of La1−xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 ◦C for undoped...
-
Precipitation of calcium carbonate in the presence of rhamnolipids in alginate hydrogels as a model of biomineralization
PublicationThis paper reports the effects of rhamnolipids presence in the alginate hydrogel and CO32- solution, on the precipitation of CaCO3 in the Ca2+ loaded alginate hydrogel. Characteristics of the formed particles are discussed. Model conditions containing alginate hydrogel and rhamnolipids were used in order to mimic the natural environment of biomineralization in biofilms. It has been shown that rhamnolipids affect the characteristics...
-
Precypitacja węglanu wapnia metodą karbonatyzacji z dodatkiem glicerolu w obecności wybranych promotorów absorpcji CO2
PublicationJednym ze sposobów produkcji węglanu wapnia jest metoda gaz-ciecz, w której jako reagent stosuje się gazowy CO2 oraz roztwór soli wapnia, do którego dodawane są związki sprzyjające absorpcji CO2, tzw. promotory. Reakcja z gazowym CO2 jest specyficzna, ponieważ powstawanie jonów wodorowęglanowych podczas absorpcji CO2 z reakcją chemiczną jest etapem decydującym o szybkości procesu strącania CaCO3. Celem niniejszej pracy było określenie...
-
Preparation of methanation catalysts for high temperature SOEC by β-cyclodextrin-assisted impregnation of nano-CeO2 with transition metal oxides
PublicationThe aim of this work was to prepare and examine the catalytic activity of nanometric CeO2 decorated with transition metal oxides – Ni, Co, Cu, Fe and Mn – towards a high-temperature methanation process under SOEC CO2/H2O simulated co-electrolysis conditions. Samples were prepared using the wet impregnation method via the conventional process and with the addition of native cyclodextrin. The influence of β-cyclodextrin (βCD) onto...
-
Production and Properties of the Porous Layer Obtained by the Electrochemical Method on the Surface of Austenitic Steel
Publication: The growing demand for implants has seen increasing interest in the introduction of new technologies and surface modification methods of metal biomaterials. This research aimed to produce and characterize a porous layer grown on austenitic stainless steel 316L, obtained via the anodization process near the micro-arc oxidation, i.e., low voltage micro-arc oxidation (LVMAO). The discussed layer significantly influences the properties...
-
Properties of New Composite Materials Based on Hydroxyapatite Ceramic and Cross-Linked Gelatin for Biomedical Applications
PublicationThe main aim of the research was to develop a new biocompatible and injectable composite with the potential for application as a bone-to-implant bonding material or as a bone substitute. A composite based on hydroxyapatite, gelatin, and two various types of commercially available transglutaminase (TgBDF/TgSNF), as a cross-linking agent, was proposed. To evaluate the impacts of composite content and processing parameters on various...
-
Properties of Oxygen Vacancy and Hydrogen Interstitial Defects in Strontium Titanate: DFT + Ud,p Calculations
PublicationThis work presents extensive theoretical studies focused on the mixed ion-electron transport in cubic strontium titanate (STO). A new approach to the description of this difficult system was developed within the framework of linear-scaling Kohn–Sham density functional theory, as realized in the ONETEP program. The description we present is free of any empirical parameters and relies on the Hubbard U and Hund’s J corrections applied...
-
Protocolo de Preparación y Evaluación de Pilas de Combustible de Óxido Sólido
PublicationEste protocolo describe la metodología para la preparación de celdas de óxido sólido y su evaluación como pila de combustible (SOFC). Es fruto del estudio realizado en el marco de los proyectos FCTESTNET [1] y SOFCNET [2] del V Programa Marco, en el Comité IEC/TC105 [3] e investigaciones llevadas a cabo en el laboratorio. Las pilas de combustible son dispositivos capaces de transformar la energía química de un combustible en energía...
-
Proton-Electron Hole Interactions in Sr(Ti,Fe)O3−δ Mixed-Conducting Perovskites
PublicationOxides in which total electrical conductivity is determined by the partial conductivities of three types of charge carriers i.e. holes/ electrons, oxygen ions, and protons are key components of well-functioning proton ceramic fuel cells. Apart from electrochemical properties also easily modified microstructure is an important feature of the electrodes. In the paper, a group of SrTi1−xFexO3−δ (STF, x = 0.2–0.8) perovskites prepared...
-
Pyrolysis of RDF and Catalytic Decomposition of the Produced Tar in a Char Bed Secondary Reactor as an Efficient Source of Syngas
PublicationOne of the technical limitations of refuse-derived fuel (RDF) pyrolysis is the high content of tar in its gas products. In order to resolve this problem, a two-stage RDF pyrolysis with a catalyst based on char from RDF pyrolysis is proposed. This paper presents the results of municipal waste pyrolysis beginning in an oven heated to 480 °C and ending with catalytic tar cracking carried out in the temperature range from 800 to 1000...
-
Quality assessment of low voltage surge arresters
PublicationUsers expect reliable operation of the surge arrester during overvoltages, which may originate from a switching process or a lightning discharge. The necessary conditions to guarantee these expectations are: appropriate construction of the surge arrester, its production being maintained in accordance with technical standards, and a positive results of the type test (as well routine and acceptance tests). The recipient, especially...
-
Quantification of Compatibility Between Polymeric Excipients and Atenolol Using Principal Component Analysis and Hierarchical Cluster Analysis
PublicationAn important challenge to overcome in the solid dosage forms technology is the selection of the most biopharmaceutically efficient polymeric excipients. The excipients can be selected, among others, by compatibility studies since incompatibilities between ingredients of the drug formulations adversely affect their bioavailability, stability, efficacy, and safety. Therefore, new, fast, and reliable methods for detecting incompatibility...
-
Structural properties of mixed conductor Ba1−xGd1−yLax+yCo2O6−δ
PublicationBa1−xGd1−yLax+yCo2O6−δ (BGLC) compositions with large compositional ranges of Ba, Gd, and La have been characterised with respect to phase compositions, structure, and thermal and chemical expansion. The results show a system with large compositional flexibility, enabling tuning of functional properties and thermal and chemical expansion. We show anisotropic chemical expansion and detailed refinements of emerging phases as La is...
-
Surface and Trapping Energies as Predictors for the Photocatalytic Degradation of Aromatic Organic Pollutants
PublicationIn this study, anatase samples enclosed by the majority of three different crystal facets {0 0 1}, {1 0 0}, and {1 0 1} were successfully synthesized. These materials were further studied toward photocatalytic degradation of phenol and toluene as model organic pollutants in water and gas phases. The obtained results were analyzed concerning their surface structure, reaction type, and surface development. Moreover, the regression...
-
Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch
PublicationA very important method of reducing the amount of polymer waste in the environment is the introduction to the market of polymers susceptible to degradation under the influence of environmental factors. This paper presents the results of testing the susceptibility to degradation in soil of branched polyesterurethane (PUR) based on poly([R,S]-3-hydroxybutyrate) (R,S-PHB), modified with poly([D,L]-lactide) (PLA) and starch (St). Weight...
-
Szybkie wykrywanie wirusa grypy we wczesnej fazie rozwoju za pomocą sensorów nanodiamentowych domieszkowanych borem
PublicationPrzedstawiono konstrukcję i wyniki wstępnych badań szybkiego elektrochemicznego sensora wykonanego na bazie cienkich warstw nanokrystalicznego diamentu domieszkowanego borem, który umożliwia wykrywanie śladowych ilości wirusa grypy we wczesnej fazie rozwoju. Zapewnia to identyfikację ognisk pandemii.
-
Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters
PublicationThe importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls...
-
Technologia wytwarzania addytywnego przewodzących nanokompozytów węglowych z matrycą polilaktydową w aspekcie zastosowań elektrochemicznych
PublicationDruk 3D jest obecny w wielu przestrzeniach życia codziennego, od hobbystów po przemysł samochodowy, lotniczy czy medycynę. Znalazł on również swoje zastosowanie w badaniach elektrochemicznych. We wstępie pracy opisano historię oraz rozwój druku 3D. Szczególnie skupiono się na komercyjnie dostępnych przewodzących materiałach kompozytowych PLA, używanych w badaniach elektrochemicznych. Rozdział zawierający wyniki badań podzielono...
-
Temperature-controlled nanomosaics of AuCu bimetallic structure towards smart light management
PublicationGold–copper nanostructures are promising in solar-driven processes because of their optical, photocatalytic and photoelectrochemical properties, especially those which result from the synergy between the two metals. Increasing interest in their internal structure, such as the composition or distribution of the Au and Cu as well as the size and shape of the nanoparticles, have developed to define their physicochemical properties. In...
-
Tetrahedrally modified MnMe0.1Co1.9O4 (Me = Zn, Mg, Li) spinels for non-enzymatic glucose sensing
PublicationIn this work, tetrahedrally modified MnMe0.1Co1.9O4 (Me = Zn, Mg, Li) spinels were prepared via the sol–gel synthesis method with subsequent ball-milling fragmentation. The prepared samples were evaluated as glucose–sensing catalyst. The reference MnCo2O4 spinel exhibited a sensitivity of 49 µA mM−1 cm−2 and a nonlinearity error of 5.2% in the response range from 0.02 to 1 mM. The partial substitution of cobalt in the reference...
-
The electrical, morphological and optical properties of heavily boron-doped diamond sheets as a function of methane concentration in the gas phase
PublicationBoron-doped diamonds (BDD) are known for their excellent properties such as high thermal conductivity, high mobility, low absorption in visible light, and biocompatibility. In this work, we investigated the electrical, morphological and optical properties of heavily boron-doped diamond thin sheets as a function of methane concentration in the gas phase. Free-standing diamond sheets were fabricated using a microwave plasma-assisted...
-
The phenomenon of increasing capacitance induced by 1T/2H-MoS2 surface modification with Pt particles – Influence on composition and energy storage mechanism
PublicationIn this paper, several approaches to the synthesis of molybdenum-based electrode materials for supercapacitors are presented, including anodization, hydrothermal process and annealing. For the material prepared via anodization of a molybdenum plate, followed by a hydrothermal process in thiourea aqueous solution, a thorough study of the Pt-surface modification through repetitive cycling in 1 M sulfuric acid with Pt acting as a...
-
The valance state of vanadium-key factor in the flexibility of potassium vanadates structure as cathode materials in Li-ion batteries
PublicationPotassium hexavanadate (K2V6O16·nH2O) nanobelts have been synthesized by the LPE-IonEx method, which is dedicated to synthesis of transition metal oxide bronzes with controlled morphology and structure. The electrochemical performance of K2V6O16·nH2O as a cathode material for lithium-ion batteries has been evaluated. The KVO nanobelts demonstrated a high discharge capacity of 260 mAh g−1, and long-term cyclic stability up to 100...
-
Thermal dewetting as a method of surface modification of the gold thin films for surface plasmon resonance based sensor applications
PublicationHere, we report a quick and simple approach with low, optimized production costs to obtain surface plasmon resonance (SPR) based sensors fabricated through a time- and resource-effective method based on thermal dewetting of thin Au films. From the applicative point of view, the method of detection presented here should be easier to implement, since light transmission measurements seem to be much less challenging than light refractive...
-
Time reversal invariant single-gap superconductivity with upper critical field larger than the Pauli limit in NbIr2B2
PublicationRecently, compounds with noncentrosymmetric crystal structure have attracted much attention for providing a rich playground in search for unconventional superconductivity. NbIr2B2 is a new member to this class of materials harboring superconductivity below Tc = 7.3(2) K and a very high upper critical field that exceeds Pauli limit. Here we report on muon spin rotation (μSR) experiments probing the temperature and field dependence...
-
Ti/TiO2 nanotubes sensitized PbS quantum dots as photoelectrodes applied for decomposition of anticancer drugs under simulated solar energy
PublicationOne of the challenges in research into photoelectrocatalytic (PEC) degradation of pollutants is finding the appropriate photoanode material, which has a significant impact on the process efficiency. Among all others, photoelectrodes based on an ordered TiO2 nanotube arrays are a promising material due to well-developed surface area and efficient charge separation. To increase the PEC activity of this material, the SILAR method was...
-
Towards azeotropic MeOH-MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes
PublicationDeep eutectic solvents (DESs) are a new class of solvents that can offset some of the major drawbacks of common solvents and ionic liquids. When dealing with the preparation of dense membranes, the use of DESs is still challenging due to their low compatibility with the polymer phase. In this research, a novel L-proline:sulfolane (molar ratio 1:2) DES was synthesized and used for the preparation of more sustainable bio-based membranes...
-
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublicationFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
-
Tuning the Laser-Induced Processing of 3D Porous Graphenic Nanostructures by Boron-Doped Diamond Particles for Flexible Microsupercapacitors
PublicationCarbon (sp3)-on-carbon (sp2) materials have the potential to revolutionize fields such as energy storage and microelectronics. However, the rational engineering and printing of carbon-on-carbon materials on flexible substrates remains a challenge in wearable electronics technology. This study demon-strates the scalable fabrication of flexible laser-induced graphene (LIG)-boron doped diamond nanowall (BDNW) hybrid nanostructures...
-
Variations in host surfaces morphology and biology of ciliate epibionts explaining distribution pattern of epibionts in the invasive signal crayfish Pacifastacus leniusculus (Dana, 1852)
Publicationciliates on the signal crayfish Pacifastacus leniusculus in relation to specialized structures of the host’s exoskeleton for the first time. This species is known to maintain a relatively clean carapace, but it is sometimes overgrown by other organisms. Epibionts cover different parts of the signal crayfish body, mainly antennae, antennules, maxillipedes III and pereiopods with inner edges of chelae; however, some parts of the...
-
What is in a name: Defining “high entropy” oxides
PublicationABSTRACT High entropy oxides are emerging as an exciting new avenue to design highly tailored functional behaviors that have no traditional counterparts. Study and application of these materials are bringing together scientists and engineers from physics, chemistry, and materials science. The diversity of each of these disciplines comes with perspectives and jargon that may be confusing to those outside of the individual fields,...
-
X-ray Photoelectron Spectroscopy of Carboxylic Acids as Corrosion Inhibitors of Aluminium Alloys
PublicationThe datasets, titled X-ray Photoelectron Spectroscopy studies of citric acid adsorption on aluminium alloy 5754 in alkaline media and X-ray Photoelectron Spectroscopy studies of various carboxylic acids adsorption on aluminium alloys in alkaline media, contain XPS studies of the corrosion inhibitory action of selected dicarboxylic acids towards commercially available aluminium alloy 5754 in alkaline media at pH=11. These datasets...
Year 2021
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublicationPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Boron-Doped Diamond/GaN Heterojunction—The Influence of the Low-Temperature Deposition
PublicationWe report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition....
-
Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity
PublicationSol–gel layers have been the subject of many studies in recent decades. However, very little information exists about layers in which carbon structures are developed in situ. Using the spin-coating method, we obtained thin iron-doped SiO2/C composite films. The results of Raman spectroscopy showed that our samples consisted of graphitic forms and polymers. The latter’s contribution decreases with rising temperature. FTIR and EDS...
-
DC and AC Conductivity, Biosolubility and Thermal Properties of Mg-Doped Na2O–CaO–P2O5 Glasses
PublicationBioactive glasses have recently been extensively used to replace, regenerate, and repair hard tissues in the human body because of their ability to bond with living tissue. In this work, the effects of replacing Na2O with MgO on the electrical, biosolubility, and thermal properties of the target glass 10Na2O–60P2O5–30CaO (in mol%) were investigated. The electrical properties of the glasses were studied with the impedance spectroscopy...
-
Determination of the refractive index and wavelength‐dependent optical properties of few‐layer CrCl3 within the Fresnel formalism
PublicationBased on previous reports on the optical microscopy contrast of mechanically exfoliated few layer CrCl3 transferred on 285 nmand 270 nmSiO2 on Si(100), we focus on the experimental determination of an effective mean complex refractive index via a fitting analysis based on the Fresnel equations formalism. Accordingly, the layer and wavelength-dependent absorbance and reflectance are calculated. Layer and wavelength-dependent optical...