Filtry
wszystkich: 1145
wybranych: 910
-
Katalog
- Publikacje 910 wyników po odfiltrowaniu
- Czasopisma 23 wyników po odfiltrowaniu
- Konferencje 16 wyników po odfiltrowaniu
- Osoby 84 wyników po odfiltrowaniu
- Projekty 1 wyników po odfiltrowaniu
- Kursy Online 55 wyników po odfiltrowaniu
- Wydarzenia 2 wyników po odfiltrowaniu
- Dane Badawcze 54 wyników po odfiltrowaniu
Filtry wybranego katalogu
Wyniki wyszukiwania dla: MACHINE LEARNIGN WORKFLOW
-
Half-Order Modeling of Saturated Synchronous Machine
PublikacjaNoninteger order systems are used to model diffusion in conductive parts of electrical machines as they lead to more compact and knowledge models but also to improve their precision. In this paper a linear half-order impedance model of a ferromagnetic sheet deduced from the diffusion of magnetic field is briefly introduced. Then, from physical considerations and finite elements simulation, the nonlinear half-order impedance model...
-
Scientific research in the Department of Machine Design and Automotive Engineering
PublikacjaShort descriptions of various research subjects taken up at the Department of Machine Design and Automotive Engineering are included in the paper. The subjects cover a wide range of bearing systems and tribology research and the research on tires and road surfaces. A third field of activity is biomedical engineering – with the attempts to improve methods of modelling biological materials in FEM calculations. The Department has...
-
Induction machine behavioral modeling for prediction of EMI propagation.
PublikacjaThis paper presents the results of wideband behavioral modeling of an induction machine (IM). The proposed solution enables modeling the IM differential- and common-mode impedance for a frequency range from 1 kHz to 10 MHz. Methods of parameter extraction are derived from the measured IM impedances. The developed models of 1.5 kW and 7.5 kW induction machines are designed using the Saber Sketch scheme editor and simulated in the...
-
EMPIRICAL ASSESMENT OF THE MAIN DRIVING SYSTEM OF THE CIRCULAR SAWING MACHINE
PublikacjaThe producers of panel saws tend to improve sawing accuracy and minimise a level of vibrations, to increase their competitiveness at the market. Mechanical vibrations in the main saw driving system, which level depend on a plethora independent factors, may really affect sawing accuracy and general machine tool vibrations. The objective of the research was to explore vibrations signals of the main spindle system, and to extract...
-
Broken rotor bar impact on sensorless control of induction machine
PublikacjaThe aim of the research is analysis of the sensorless control system of induction machine with broken rotor for diagnostic purposes. Increasing popularity of sensorless controlled variable speed drives requires research in area of reliability, range of stable operation, fault symptoms and application of diagnosis methods. T transformation (Cunha et al.,2003) used for conversion of instantaneous rotor currents electrical circuit...
-
Rotor-Flux Vector based Observer of Interior Permanent Synchronous Machine
PublikacjaThe sensorless control system of the interior permanent magnet machine is considered in this paper. The control system is based on classical linear controllers. In the machine, there occurs non-sinusoidal distribution of rotor flux together with the slot harmonics, which are treated as the control system disturbances. In this case, the classical observer structure in the (d-q) is unstable for the low range of rotor speed resulting...
-
Multimedia industrial and medical applications supported by machine learning
PublikacjaThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine-to-Machine communication and data processing approach in Future Internet applications
Publikacja -
Network lifetime maximization in wireless mesh networks for machine-to-machine communication
Publikacja -
A JEE-based modelling and execution environment for workflow applications with just-in-time service selection
PublikacjaArtykuł prezentuje model scenariusza z dynamicznym wyborem usług do wykonania zadań scenariusza. Adekwatność rozwiązania została zaprezentowana dla zastosowań naukowych i biznesowych w warunkach kiedy dostępność usług się zmienia i usługi powinny być wybierane w trakcie działania scenariusza a nie przed jego rozpoczęciem. Pokazano, że dla scenariusza naukowego z powtarzalnymi symulacjami, algorytm dobiera usługi, aby zminimalizować...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublikacjaTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
Support Vector Machine Applied to Road Traffic Event Classification
PublikacjaThe aim of this paper is to present results of road traffic event signal recognition. First, several types of systems for road traffic monitoring, including Intelligent Transport System (ITS) are shortly described. Then, assumptions of creating a database of vehicle signals recorded in different weather and road conditions are outlined. Registered signals were edited as single vehicle pass by. Using the Matlab-based application...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Genetic Algorithm Approach for Gains Selection of Induction Machine Extended Speed Observer
PublikacjaThe subject of this paper is gains selection of an extended induction machine speed observer. A high number of gains makes manual gains selection difficult and due to nonlinear equations of the observer, well-known methods of gains selection for linear systems cannot be applied. A method based on genetic algorithms has been proposed instead. Such an approach requires multiple fitness function calls; therefore, using a quality index...
-
Decisional DNA (DDNA) Based Machine Monitoring and Total Productive Maintenance in Industry 4.0 Framework
PublikacjaThe entire manufacturing spectrum is transforming with the advent of Industry 4.0. The features of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) were utilized for developing Virtual Engineering Objects (VEO), Virtual Engineering Process (VEP) and Virtual Engineering Factory (VEF), which in turn facilitate the creation of smart factories. In this study, DDNA based Machine Monitoring for Total Maintenance...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublikacjaA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
SSFR Test of Synchronous Machine for Different Saturation Levels using Finite-Element Method
PublikacjaIn this paper the StandStill Frequency Response characteristics (SSFR) of saturated synchronous generator (SG) have been calculated using Finite Element Method (FEM) analysis. In order to validate proposed approach for unsaturated conditions FEM simulation from Flux2D software has been compared with the measurements performed on the 10 kVA, 4- poles synchronous machine ELMOR GCe64a of salient rotor construction, equipped with a...
-
Experimental analysis of chip removing system in circular sawing machine
PublikacjaPaper presents analysis of the process of removing the wood chips generated during the cutting of the material on the circular sawing machine. The attention is focused on the upper cover of the chip removing system. Within the framework of the work a systematic experimental study of pressure distribution in the cover during operation of the selected rotational speed of saw blade with a diameter of 300 mm and 450 mm was carried...
-
Non-Adaptive Rotor Speed Estimation of Induction Machine in an Adaptive Full-Order Observer
PublikacjaIn the sensorless control system of an induction machine, the rotor speed value is not measured but reconstructed by an observer structure. The rotor speed value can be reconstructed by the classical adaptive law with the integrator. The second approach, which is the main contribution of this paper, is the non-adaptive structure without an integrator. The proposed method of the rotor speed reconstruction is based on an algebraic...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Podstawowe sposoby zwiększania wiarygodności wykonania przebiegów wymagających udziału człowieka w human workflow
PublikacjaOpisano pojęcie procesu biznesowego oraz przepływu pracy w kontekście automatyzacji mającej na celu optymalizację działań i podniesienie jakości usługi. Przedstawiono charakterystykę procesów pracy angażujących człowieka oraz wykorzystujących dedykowane wzorce przepływów tego typu. Zaproponowano zwiększenie stopnia automatyzacji wykonania procesu wraz z metodami zwiększania wiarygodności wykonania przebiegów pracy przez kontrolę...
-
Modeling, run-time optimization and execution of distributed workflow applications in the JEE-based BeesyCluster environment
PublikacjaArtykuł prezentuje kompletne rozwiązanie do modelowania naukowych i biznesowych scenariuszy. statycznego i dynamicznego wyboru usług z uwzględnieniem parametrów jakościowych oraz wykonanie scenariuszy w rzeczywistym środowisku. Scenariusz jest modelowany jako acykliczny graf skierowany, w którym węzły reprezentują zadania zaś krawędzie zależności pomiędzy zadaniami. Warstwa pośrednia BeesyCluster jest wykorzystana do umożliwienia...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Nonadaptive estimation of the rotor speed in an adaptive full order observer of induction machine
PublikacjaThe article proposes a new method of reproducing the angular speed of the rotor of a cage induction machine designed for speed observers based on the adaptive method. In the proposed solution, the value of the angular speed of the rotor is not determined by the classical law of adaptation using the integrator only by an algebraic relationship. Theoretical considerations were confirmed by simulation and experimental tests.
-
A Universal Gains Selection Method for Speed Observers of Induction Machine
PublikacjaProperties of state observers depend on proper gains selection. Each method of state estimation may require the implementation of specific techniques of finding those gains. The aim of this study is to propose a universal method of automatic gains selection and perform its verification on an induction machine speed observer. The method utilizes a genetic algorithm with fitness function which is directly based on the impulse response...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
The application of a photopolymer material for the manufacture of machine elements using rapid prototyping techniques
PublikacjaThe paper discusses the application of polymer resin for 3D printing. The first section focuses on rapid prototyping technique and properties of the photopolymer, used as input material in the manufacture of machine components. Second part of the article was devoted to exemplary 3-D-printed elements for incorporation in machines. The article also contains detailed description of problems encountered in implementation of the selected...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publikacja—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Evaluation of Machine Learning Methods for the Experimental Classification and Clustering of Higher Education Institutions
PublikacjaHigher education institutions have a big impact on the future of skills supplied on the labour market. It means that depending on the changes in labour market, higher education institutions are making changes to fields of study or adding new ones to fulfil the demand on labour market. The significant changes on labour market caused by digital transformation, resulted in new jobs and new skills. Because of the necessity of computer...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublikacjaMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublikacjaThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublikacjaThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Noise profiling for speech enhancement employing machine learning models
PublikacjaThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublikacjaIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
The methodology for determining of the value of cutting power for cross cutting on optimizing sawing machine
PublikacjaIn the article the methodology of forecasting the energy effects of the cross-cutting process using the classical method, which takes into account the specific cutting resistance, is presented. The values of cutting power for the cross-cutting process of two types of wood (softwood and hardwood) were forecasted for the optimizing sawing machine with using presented methodology. The cross-cutting process with high values of feed...
-
Application of Support Vector Machine for Determination of Impact of Traffic-Induced Vibrations on Buildings
PublikacjaThe aim of the article is to present an algorithm of Support Vector Machine created to forecast the impact of traffic-induced vibrations on residential buildings. The method is designed to classify the object into one of two classes. The classification into the first class means that there is no impact of vibrations on the building, while classification to the second class indicates the possible influence and suggests the execution...