Filtry
wszystkich: 3236
wybranych: 2689
-
Katalog
- Publikacje 2689 wyników po odfiltrowaniu
- Czasopisma 188 wyników po odfiltrowaniu
- Konferencje 35 wyników po odfiltrowaniu
- Osoby 130 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Kursy Online 95 wyników po odfiltrowaniu
- Wydarzenia 12 wyników po odfiltrowaniu
- Dane Badawcze 77 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: multi-task learning
-
Improvement of Task Management with Process Models in Small and Medium Software Companies
PublikacjaSmall and medium software companies exhibit many special features that give reason for a dedicated approach to process improvement. They often cannot afford implementing maturity models or quality standards both in terms of time and money. Instead, they expect simpler solutions that can allow to run projects in more systematic and repeatable way, increase quality and knowledge management. In this paper, we present a method focused...
-
From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies
PublikacjaIn this paper, we propose a novel approach for obtaining predictions from per-class scores to improve the accuracy of multi-label classification systems. In a multi-label classification task, the expected output is a set of predicted labels per each testing sample. Typically, these predictions are calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores exceeding a given threshold value...
-
Streaming Real-time Data in Distributed Dispatcher and Teleinformation Systems for Visualization of Multimedia Data of the Border Guard
PublikacjaSurveillance of the sea borders is a very important task for the Border Guard. Monitoring of country maritime border is an important task of the Border Guard. This task can be facilitated with the use of the technology enabling gathering information from distributed sources and its supervision and visualization. This task can be accomplished using a technology that allows to collect information from distributed sensors of different...
-
Behavior Based Complete Coverage Task of Unknown Area by an Autonomous Mobile Robot SCORPION with Static Obstacles in Environment
PublikacjaIn the paper the behavior based control system of an autonomous mobile robot SCORPION is presented to execute the one of the most difficult navigation task, which is the complete coverage task of unknown area with static obstacles in the environment. The main principle assumed to design control system was that the robot should cover all area only once, if it possible, to optimize the length of path and energy consumption. All commercial...
-
The System of the Supervision and the Visualization of Multimedia Data for BG
PublikacjaMonitoring of country maritime border is an important task of the Border Guard. This task can be facilitated with the use of the technology enabling gathering information from distributed sources and its supervision and visualization. The system presented in the paper is an extension and enhancement of the previously developed distributed system map data exchange system. The added functionalities allow supplementation of map data...
-
Voice command recognition using hybrid genetic algorithm
PublikacjaAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublikacjaIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
Rozproszone usługi obliczeniowe na klastrach TASK z dostępem przez WWW i Web Services.
PublikacjaArtykuł omawia architekturę i doświadczenia wstępnych faz specyfikacji wymagań i analizy projektu, który umożliwi zdalne wykorzystanie równoległych klastrów i/lub superkomputerów sieci TASK przez użytkowników z rozproszonych geograficznie lokalizacji. System zapewni dotychczasowym i nowym użytkownikom klastrów i superkomputerów TASK zdalne uruchamianie i zarządzanie aplikacjami, bibliotekami równoległymi i sekwencyjnymi poprzez...
-
Classification of Sea Going Vessels Properties Using SAR Satellite Images
PublikacjaThe aim of the project was to analyze the possibility of using machine learning and computer vision to identify (indicate the location) of all sea-going vessels located in the selected area of the open sea and to classify the main attributes of the vessel. The key elements of the project were to download data from the Sentinel-1 satellite [1], download data on the sea vessels [2], then automatically tag data and develop a detection...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Weakly-Supervised Word-Level Pronunciation Error Detection in Non-Native English Speech
PublikacjaWe propose a weakly-supervised model for word-level mispronunciation detection in non-native (L2) English speech. To train this model, phonetically transcribed L2 speech is not required and we only need to mark mispronounced words. The lack of phonetic transcriptions for L2 speech means that the model has to learn only from a weak signal of word-level mispronunciations. Because of that and due to the limited amount of mispronounced...
-
From Sequential to Parallel Implementation of NLP Using the Actor Model
PublikacjaThe article focuses on presenting methods allowing easy parallelization of an existing, sequential Natural Language Processing (NLP) application within a multi-core system. The actor-based solution implemented with the Akka framework has been applied and compared to an application based on Task Parallel Library (TPL) and to the original sequential application. Architectures, data and control flows are described along with execution...
-
Design of a microrobotic wrist for needle laparoscopic surgery
PublikacjaThe paper addresses the design of a micro wrist for needle laparoscopic surgery (needlescopy) using MEMS technology and an original 3 degree of freedom, 3D architecture. Advancement in needlescopy drives the development of multi-dof micro-tools 1-2mmin diameter with 3D mobility but standard available fabricationtechniques are for 2.5D structures. The paper discusses thedevelopment steps and design solutions for the realization...
-
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Eigenfaces, Fisherfaces, Laplacianfaces, Marginfaces – How to Face the Face Verification Task
PublikacjaThis paper describes the exhaustive tests of four known methods of linear transformations (Eigenfaces, Fisherfaces, Laplacianfaces and Marginfaces) in the context of face verification task. Additionally, we introduce a new variant of the transformation (Laplacianface + LDA), and the specific interval-based decision rule. Both of them improve the performance of face verification, in general, however, our experiments show that the...
-
Updating a hospital building. A task for innovation design
PublikacjaRefurbishment of a hospital, especially located in a historical building, is a task that goes far beyond a standard framework of architectural practice. A concept of modularity in the architecture of the late nineteenth and early twentieth century was only just to happen, building system installations and technical equipment appeared as the simplest solutions. Inscribing complex functional solutions into such a space is an interesting...
-
Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?
PublikacjaIn this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublikacjaRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
Parallel Computations of Text Similarities for Categorization Task
PublikacjaIn this chapter we describe the approach to parallel implementation of similarities in high dimensional spaces. The similarities computation have been used for textual data categorization. A test datasets we create from Wikipedia articles that with their hyper references formed a graph used in our experiments. The similarities based on Euclidean distance and Cosine measure have been used to process the data using k-means algorithm....
-
AITP - AI Thermal Pedestrians Dataset
PublikacjaEfficient pedestrian detection is a very important task in ensuring safety within road conditions, especially after sunset. One way to achieve this goal is to use thermal imaging in conjunction with deep learning methods and an annotated dataset for models training. In this work, such a dataset has been created by capturing thermal images of pedestrians in different weather and traffic conditions. All images were manually annotated...
-
Multi-agent graph searching and exploration algorithms
PublikacjaA team of mobile entities, which we refer to as agents or searchers interchangeably, starting from homebases needs to complete a given task in a graph.The goal is to build a strategy, which allows agents to accomplish their task. We analyze strategies for their effectiveness (e.g., the number of used agents, the total number of performed moves by the agents or the completion time).Currently, the fields of on-line (i.e., agents...
-
A Generative Approach to Hull Design for a Small Watercraft
PublikacjaIn the field of ocean engineering, the task of spatial hull modelling is one of the most complicated problems in ship design. This study presents a procedure applied as a generative approach to the design problems for the hull geometry of small vessels using elements of concurrent design with multi-criteria optimisation processes. Based upon widely available commercial software, an algorithm for the mathematical formulation of...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Investigating Feature Spaces for Isolated Word Recognition
PublikacjaThe study addresses the issues related to the appropriateness of a two-dimensional representation of speech signal for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and time-frequency signal representation converted to the investigated feature spaces. In particular, waveforms and fractal dimension features of the signal were chosen for the time domain, and...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Performance Evaluation of the Parallel Codebook Algorithm for Background Subtraction in Video Stream
PublikacjaA background subtraction algorithm based on the codebook approach was implemented on a multi-core processor in a parallel form, using the OpenMP system. The aim of the experiments was to evaluate performance of the multithreaded algorithm in processing video streams recorded from monitoring cameras, depending on a number of computer cores used, method of task scheduling, image resolution and degree of image content variability....
-
Surface sliding in human abdominal wall numerical models: Comparison of single-surface and multi-surface composites
PublikacjaDetermining mechanical properties of abdominal soft tissues requires a coupled experimental-numerical study, but first an appropriate numerical model needs to be built. Precise modeling of human abdominal wall mechanics is difficult because of its complicated multi-layer composition and large variation between specimens. There are several approaches concerning simplification of numerical models, but it is unclear how far one could...
-
Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation.
PublikacjaCoordinated activity spanning anatomically distributed neuronal networks underpins cognition and mediates limbic-cortical interactions during learning, memory, and decision-making. We used CP55940, a potent agonist of brain cannabinoid receptors known to disrupt coordinated activity in hippocampus, to investigate the roles of network oscillations during hippocampal and medial prefrontal cortical (mPFC) interactions in rats. During...
-
Tolerance-Aware Multi-Objective Optimization of Antennas by Means of Feature-Based Regression Surrogates
PublikacjaAssessing the immunity of antenna design to fabrication tolerances is an important consideration, especially when the manufacturing process has not been predetermined. At the same time, the antenna parameter tuning should be oriented toward improving the performance figures pertinent to both electrical (e.g., input matching) and field properties (e.g., axial ratio bandwidth) as much as possible. Identification of available trade-offs...
-
Approximate and analytic flow models for leak detection and identification
PublikacjaThe article presents a comprehensive quantitative comparison of four analytical models that, in different ways, describe the flow process in transmission pipelines necessary in the task of detecting and isolating leaks. First, the analyzed models are briefly presented. Then, a novel model comparison framework was introduced along with a methodology for generating data and assessing diagnostic effectiveness. The study presents basic...
-
The Application of Vibration Recording and Analysis in Tribological Research on Sliding Friction
PublikacjaThe paper reports on a tribological research on the macroscopic manifestation and characteristics of sliding friction. The aim of the task was to measure friction in lubricated sliding contacts and test the interactions between the environment (the test rig) and the experimental friction contact. Friction-induced vibrations were observed and studied as a manifestation of the process. The typical set of velocity and force/torque...
-
Data Partitioning and Task Management in the Clustered Server Layer of the Volunteer-based Computation System
PublikacjaWhile the typical volunteer-based distributed computing system focus on the computing performance, the Comcute system was designed especially to keep alive in the emergency situations. This means that designers had to take into account not only performance, but the safety of calculations as well. Quadruple-layered architecture was proposed to separate the untrusted components from the core of the system. The main layer (W) consists...
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublikacjaComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublikacjaWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublikacjaIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Generalized Formulation of Response Features for Reliable Optimization of Antenna Input Characteristics
PublikacjaElectromagnetic (EM)-driven parameter adjustment has become imperative in the design of modern antennas. It is necessary because the initial designs rendered through topology evolution, parameter sweeping, or theoretical models, are often of poor quality and need to be improved to satisfy stringent performance requirements. Given multiple objectives, constraints, and a typically large number of geometry parameters, the design closure...
-
Moduł Warsztaty - narzędzie w procesie edukacji na uczelni wyższej
PublikacjaObecnie istnieje bardzo szeroka gama narzędzi informatycznych, które wspierają proces edukacji przy wykorzystaniu internetu na uczelniach wyższych. Wśród nieodpłatnych narzędzi powszechnie znana jest platforma Moodle. W artykule zaprezentowano jeden z jej modułów – Warsztaty. Przedstawiono jego funkcjonalność. Opisano jego zalety i wady w nauczaniu łączącym techniki online i tradycyjne na uczelni wyższej (blended-learning). W artykule...
-
Reduced-cost optimization-based miniaturization of microwave passives by multi-resolution EM simulations for internet of things and space-limited applications
PublikacjaStringent performance specifications along with constraints imposed on physical dimensions, make the design of contemporary microwave components a truly onerous task. In recent years, the latter demand has been growing in importance, with the innovative application areas such as Internet of Things coming into play. The need to employ full-wave electromagnetic (EM) simu-lations for response evaluation, reliable yet CPU heavy, only...
-
Quantitative risk assessment of new ship designs in damage conditions
PublikacjaThe paper is devoted to safety of ships in damage conditions. The novel contribution of the paper is connected with a new Multi-Task ship (MT-ship) design at the preliminary stage of design. There are a few problems at the preliminary stage that should be considered. One problem is connected with if the quantitative risk-based method is a reliable and formal method for safety assessment of such the new design (MT-ship) in damage...
-
Advanced Ship Control Methods
PublikacjaThe chapter presents two main streams of research in vessel control at sea: dynamic positioning (DP) of the vessel and decision support in case of collision at sea. The control structure and basic requirements for the DP system are defined. Selected issues of automatic control of a dynamically positioned vessel are discussed. A review of advanced methods of controlling a DP ship is carried out, taking into account the tasks of...
-
The principles of arturbain.fr for teaching sustainable urban design
PublikacjaThe article is an attempt to show how important it is in the contemporary education of architecture students to use an ordered repertoire of principles and concepts of a universal nature, at the same time, pointing to the new directions of solutions and answers to the problems of the 21st century. This task is implemented by the French Association L'Arturbain dans les Territoires. It is accompanied by an idea consisting in observing...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...
-
Methodology for hospital design in architectural education
PublikacjaThe architecture of a hospital should be a response to strong user requirements. Recommendations on how to shape the environment of such facilities are highly complex, integrating guidelines from many fields of science. If contradictions between them exist, the designer is required to set priorities for spatial activities. This issue is particularly important during architectural education. The learning process should include projects...
-
Scenario-planning solutions for waterfront flood-prone areas
PublikacjaThe aim of this article is to discuss the potential of applying scenario planning to achieve resilient and future-oriented solutions for flood-prone areas. The authors have proposed additions to scenario-planning processes based on the introduction of research-by-design architectural inquiries. Examined in this article is the insight into the testing of such a modified scenario-planning methodology during two courses that accompanied...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublikacjaA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Road surface roughness estimation employing integrated position and acceleration sensor
PublikacjaAssessment of a surface quality being an essential task for the authorities supervising the roads provides the subject of the paper. Information about riding quality of a pavement, important for drivers, both in terms of their comfort and safety is collected during experiments employing mobile sensors. The paper describes the use of a miniature position and acceleration sensor for evaluation of the roughness of the road surface....
-
An automated, low-latency environment for studying the neural basis of behavior in freely moving rats
PublikacjaBackground Behavior consists of the interaction between an organism and its environment, and is controlled by the brain. Brain activity varies at sub-second time scales, but behavioral measures are usually coarse (often consisting of only binary trial outcomes). Results To overcome this mismatch, we developed the Rat Interactive Foraging Facility (RIFF): a programmable interactive arena for freely moving rats with multiple feeding...
-
Miniaturization-Oriented Design of Spline-Parameterized UWB Antenna for In-Door Positioning Applications
PublikacjaDesign of ultra-wideband antennas for in-door localization applications is a challenging task. It involves development of geometry that maintains appropriate balance between the size and performance. In this work, a topologically-flexible monopole has been generated using a stratified framework which embeds a gradient-based trust-region (TR) optimization algorithm in a meta-loop that gradually increases the structure dimensionality....
-
How can analysts use multicriteria decision analysis?
PublikacjaProper decision making in multifacitated situation is very challenging task. It is especially difficult if there are many alternatives and criteria that are often contradictory. Analytical chemistry and related sciences involve many situations where decisions on complex problems are made. The support tools may be the use of MCDA (Multi-criteria Decision Analysis) algorithms. They formalize the decision process, make it transparent...