Wyniki wyszukiwania dla: human learning
-
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publikacja -
Automated Text Annotation Using Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publikacja -
Automated Text Annotation Using a Semi-Supervised Approach with Meta Vectorizer and Machine Learning Algorithms for Hate Speech Detection
Publikacja -
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publikacja -
Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage
Publikacja -
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Publikacja -
E-LEARNING AND TEACHING STRATEGIES OF UNIVERSITY TEACHERS. A CASE STUDY IN THE TEACHING OF SPANISH AS A SECOND LANGUAGE IN SLOVAKIA, POLAND AND THE USA
Publikacja -
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
PublikacjaMethods Results Discussion References Abbreviations Copyright Abstract Background: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinformation on the web. Objective: The aim of this study is to...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublikacjaThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublikacjaIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Computational Analysis of Transformational Organisational Change with Focus on Organisational Culture and Organisational Learning: An Adaptive Dynamical Systems Modeling Approach
PublikacjaTransformative Organisational Change becomes more and more significant both practically and academically, especially in the context of organisational culture and learning. However computational modeling and formalization of organisational change and learning processes are still largely unexplored. This chapter aims to provide an adaptive network model of transformative organisational change and translate a selection of organisational...
-
Is it too late now to say we’re sorry? Examining anxiety contagion and crisis communication strategies using machine learning
PublikacjaIn this paper, we explore the role of perceived emotions and crisis communication strategies via organizational computer-mediated communication in predicting public anxiety, the default crisis emotion. We use a machine-learning approach to detect and predict anxiety scores in organizational crisis announcements on social media and the public’s responses to these posts. We also control for emotional and language tones in organizational...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublikacjaControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublikacjaIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Toward Robust Pedestrian Detection With Data Augmentation
PublikacjaIn this article, the problem of creating a safe pedestrian detection model that can operate in the real world is tackled. While recent advances have led to significantly improved detection accuracy on various benchmarks, existing deep learning models are vulnerable to invisible to the human eye changes in the input image which raises concerns about its safety. A popular and simple technique for improving robustness is using data...
-
Investigating Noise Interference on Speech Towards Applying the Lombard Effect Automatically
PublikacjaThe aim of this study is two-fold. First, we perform a series of experiments to examine the interference of different noises on speech processing. For that purpose, we concentrate on the Lombard effect, an involuntary tendency to raise speech level in the presence of background noise. Then, we apply this knowledge to detecting speech with the Lombard effect. This is for preparing a dataset for training a machine learning-based...
-
Weighted Ensemble with one-class Classification and Over-sampling and Instance selection (WECOI): An approach for learning from imbalanced data streams
Publikacja -
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublikacjaDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
Analysis of pedestrian activity before and during COVID-19 lockdown, using webcam time-lapse from Cracow and machine learning
Publikacja -
Determinants of anxiety levels among young males in a threat of experiencing military conflict–Applying a machine-learning algorithm in a psychosociological study
Publikacja -
Love your mistakes!—they help you adapt to change. How do knowledge, collaboration and learning cultures foster organizational intelligence?
PublikacjaPurpose: The study aims to determine how the acceptance of mistakes is related to adaptability to change in a broad organizational context. Therefore it explores how knowledge, collaboration, and learning culture (including “acceptance of mistakes”) might help organizations overcome their resistance to change. Methodology: The study uses two sample groups: students aged 18–24 (330 cases) and employees aged >24 (326 cases) who work...
-
Machine learning-based prediction of seismic limit-state capacity of steel moment-resisting frames considering soil-structure interaction
PublikacjaRegarding the unpredictable and complex nature of seismic excitations, there is a need for vulnerability assessment of newly constructed or existing structures. Predicting the seismic limit-state capacity of steel Moment-Resisting Frames (MRFs) can help designers to have a preliminary estimation and improve their views about the seismic performance of the designed structure. This study improved data-driven decision techniques in...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Learning from mistakes within organizations: An adaptive network-oriented model for a double bias perspective for safety and security through cyberspace
PublikacjaAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
E-learning przez Internet w szkolnictwie wyższym. Doświadczenia Szkoły Głównej Handlowej w Warszawie i Politechniki Gdańskiej.
PublikacjaOpisano cztery podstawowe rodzaje e-learningu, przedstawiono strukturę funkcjonalną systemów zarządzania nauczaniem na odległość i zarządzania treścią nauczania (ang. LMS, LCMS) oraz zaprezentowano doświadczenia Szkoły Głównej Handlowej w Warszawie i Politechniki Gdańskiej w nauczaniu na odległość.
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublikacjaThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublikacjaControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublikacjaMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
IoT Based Intelligent Pest Management System for Precision Agriculture
PublikacjaDespite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture...
-
Chat GPT Wrote It: What HCI Educators Can Learn from their Students?
PublikacjaRecently students, teachers, and researchers equally have become impressed by Generative AI (GenAI) tools, with ChatGPT at the top. However, numerous concerns about the GenAI-related threats to academic integrity and the validity of learning outcomes are emerging. This problem is also vivid in Human-Computer Interaction (HCI) education since students can use GenAI tools to rapidly generate ideas, user interface templates, screen...
-
Visual Content Representation for Cognitive Systems: Towards Augmented Intelligence
PublikacjaCognitive Vision Systems have gained significant attention from academia and industry during the past few decades. One of the main reasons behind this interest is the potential of such technologies to revolutionize human life since they intend to work robustly under complex visual scenes (which environmental conditions may vary), adapting to a comprehensive range of unforeseen changes, and exhibiting prospective behavior. The combination...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublikacjaThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Socioeconomic and gender inequalities in home learning during the COVID-19 pandemic: examining the roles of the home environment, parent supervision, and educational provisions
Publikacja -
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublikacjaAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublikacjaAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
How does the Relationship Between the Mistakes Acceptance Component of Learning Culture and Tacit Knowledge-Sharing Drive Organizational Agility? Risk as a Moderator
PublikacjaChanges in the business context create the need to adjust organizational knowledge to new contexts to enable the organizational agile responses to secure competitiveness. Tacit knowledge is strongly contextual. This study is based on the assumption that business context determines tacit knowledge creation and acquisition, and thanks to this, the tacit knowledge-sharing processes support agility. Therefore, this study aims to expose...
-
Machine learning-based prediction of residual drift and seismic risk assessment of steel moment-resisting frames considering soil-structure interaction
PublikacjaNowadays, due to improvements in seismic codes and computational devices, retrofitting buildings is an important topic, in which, permanent deformation of buildings, known as Residual Interstory Drift Ratio (RIDR), plays a crucial role. To provide an accurate yet reliable prediction model, 32 improved Machine Learning (ML) algorithms were considered using the Python software to investigate the best method for estimating Maximum...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublikacjaPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Multimodal human-computer interfaces based on advanced video and audio analysis
PublikacjaMultimodal interfaces development history is reviewed briefly in the introduction. Examples of applications of multimodal interfaces to education software and for the disabled people are presented, including interactive electronic whiteboard based on video image analysis, application for controlling computers with mouth gestures and the audio interface for speech stretching for hearing impaired and stuttering people. The Smart...
-
Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?
PublikacjaThis study contributes to the literature on financial security by highlighting the relevance of the perceptions and resulting professional judgment of stakeholders. Assessing a company’s financial security using only economic indicators—as suggested in the existing literature—would be inaccurate when undertaking a comprehensive study of financial security. Specifically, indices and indicators based on financial or managerial reporting...
-
E-Learning as a Factor Optimizing the Amount of Work Time Devoted to Preparing an Exam for Medical Program Students during the COVID-19 Epidemic Situation
Publikacja -
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...