Filtry
wszystkich: 571
Wyniki wyszukiwania dla: forecasting pm10, artificial neural network
-
Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography
PublikacjaThe food authenticity assessment is an increasingly important issue in food quality and safety. The application of an electronic nose based on ultra-fast gas chromatography technique enables rapid analysis of the volatile compounds from food samples. Due to the fact that this technique provides chemical profiling of natural products, it can be a powerful tool for authentication in combination with chemometrics. In this article,...
-
Vehicle Detection with Self-Training for Adaptative Video Processing Embedded Platform
PublikacjaTraffic monitoring from closed-circuit television (CCTV) cameras on embedded systems is the subject of the performed experiments. Solving this problem encounters difficulties related to the hardware limitations, and possible camera placement in various positions which affects the system performance. To satisfy the hardware requirements, vehicle detection is performed using a lightweight Convolutional Neural Network (CNN), named...
-
Prognozirovanie svojstv betonov s pomoŝ'û iskusstvennyh nejronovyh setej
PublikacjaObserwacje mózgu ludzkiego oraz podstawowych komórek z jakich się składa (neuronów), doprowadziły do prób modelowania niedużych układów połączonych neuronów. Układy te, zwane w literaturze jako sieci neuronowe lub sieci neuropodobne (ang. neural network) wykazują pewne cechy zbliżone do cech mózgu. Są nimi np. zdolność uczenia i kojarzenia. Choć znany obecnie model matematyczny neuronu jest dość skomplikowany, to zachęcające wyniki...
-
Comparison of the effectiveness of automatic EEG signal class separation algorithms
PublikacjaIn this paper, an algorithm for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublikacjaUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublikacjaAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Mask Detection and Classification in Thermal Face Images
PublikacjaFace masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Equal Baseline Camera Array—Calibration, Testbed and Applications
PublikacjaThis paper presents research on 3D scanning by taking advantage of a camera array consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera such as a possibility to operate in wide range of distances and in highly illuminated areas. In an outdoor environment, the array is a competitive alternative...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublikacjaLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Development of a Friction Welding System for CNC Lathes
PublikacjaDedicated friction welding machines are sturdy in order to handle large process forces but expensive. Thus, it is proposed to equip two axis CNC lathes with an add-on direct drive friction welding system as an affordable solution for occasional use. The first part to be welded is clamped on the lathe chuck, whilst the second part is clamped on a dedicated chuck on the tailstock. The latter is programmed to follow three phases:...
-
Kazimierz Darowicki prof. dr hab. inż.
OsobyStudia wyższe ukończyłem w czerwcu 1981 roku po zdaniu egzaminu dyplomowego i obronie pracy magisterskiej. Opiekunem pracy magisterskiej był dr hab. inż. Tadeusz Szauer. W roku 1991, 27 listopada uzyskałem stopień naukowy broniąc pracę doktorską zatytułowaną „Symulacyjna i korelacyjna analiza widm immitancyjnych inhibitowanej reakcji elektrodowej”. Promotorem pracy był prof. dr hab. inż. Józef Kubicki (Wydział Chemiczny...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Opracowanie metodologii rozpoznawania i klasyfikowania emocji w filmach przy użyciu sztucznych sieci neuronowych
PublikacjaCelem rozprawy doktorskiej jest opracowanie metodologii pozwalającej na rozpoznawanie i klasyfikację emocji w filmie za pomocą sztucznych sieci neuronowych. W pracy przedstawiono tematykę związaną z kolorowaniem sceny filmowej w kontekście oddziaływania koloru na emocje widza. W celu analizy wpływu filmow na emocje widza dokonano wyboru tytułow filmowych, następnie przeprowadzono szereg wstępnych testow subiektywnych pozwalających...
-
Assessing and Mitigating Ice-Jam Flood Hazards and Risks: A European Perspective
PublikacjaThe assessment and mapping of riverine flood hazards and risks is recognized by many countries as an important tool for characterizing floods and developing flood management plans. Often, however, these management plans give attention primarily to open-water floods, with ice-jam floods being mostly an afterthought once these plans have been drafted. In some Nordic regions, ice-jam floods can be more severe than open-water floods,...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublikacjaDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublikacjaWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms
PublikacjaHuman Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of...
-
Evaluating the Use of Edge Device Towards Fall Detection in Smart City Environment
PublikacjaThis paper presents the development and preliminary testing of a fall detection algorithm that leverages OpenPose for real-time human pose estimation from video feeds. The system is designed to function optimally within a range of up to 7 meters from ground-level cameras, focusing exclusively on detected human silhouettes to enhance processing efficiency. The performance of the proposed approach was evaluated using accuracy values...
-
Social media for e-learning of citizens in smart city
PublikacjaThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublikacjaAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublikacjaThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Badanie stanu nawierzchni drogowej z wykorzystaniem uczenia maszynowego
PublikacjaW artykule opisano budowę systemu informowania o stanie nawierzchni drogowej z wykorzystaniem metod cyfrowego przetwarzania obrazów oraz uczenia maszynowego. Efektem wykonanych prac badawczych jest eksperymentalna platforma, pozwalająca na rejestrację uszkodzeń na drogach, system do analizy, przetwarzania i klasyfikacji danych oraz webowa aplikacja użytkownika do przeglądu stanu nawierzchni w wybranej lokalizacji.
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublikacjaThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublikacjaPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublikacjaAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublikacjaIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych
PublikacjaW pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...
-
Numerical Modelling for Prediction of Compression Index from Soil Index Properties in Jimma town, Ethiopia
PublikacjaIn this study, correlations are developed to predict compression index (Cc) from index parameters so that one can be able to model Jimma soils with compression index using simple laboratory tests. Undisturbed and disturbed soil samples from twelve different locations in Jimma town were collected. Laboratory tests like specific gravity, grain size analysis, Atterberg limit, and one-dimensional consolidation test for a total of twenty-four...
-
Urban scene semantic segmentation using the U-Net model
PublikacjaVision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Economical methods for measuring road surface roughness
PublikacjaTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublikacjaIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublikacjaSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
System for automatic singing voice recognition
PublikacjaW artykule przedstawiono system automatycznego rozpoznawania jakości i typu głosu śpiewaczego. Przedstawiono bazę danych oraz zaimplementowane parametry. Algorytmem decyzyjnym jest algorytm sztucznych sieci neuronowych. Wytrenowany system decyzyjny osiąga skuteczność ok. 90% w obydwu kategoriach rozpoznawania. Dodatkowo wykazano przy pomocy metod statystycznych, że wyniki działania systemu automatycznej oceny jakości technicznej...
-
Machine learning-based seismic response and performance assessment of reinforced concrete buildings
PublikacjaComplexity and unpredictability nature of earthquakes makes them unique external loads that there is no unique formula used for the prediction of seismic responses. Hence, this research aims to implement the most well-known Machine Learning (ML) methods in Python software to propose a prediction model for seismic response and performance assessment of Reinforced Concrete Moment-Resisting Frames (RC MRFs). To prepare 92,400 data...
-
On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction
PublikacjaNitrogen dioxide (NO2) is a prevalent air pollutant, particularly abundant in densely populated urban regions. Given its harmful impact on health and the environment, precise real-time monitoring of NO2 concentration is crucial, particularly for devising and executing risk mitigation strategies. However, achieving precise measurements of NO2 is challenging due to the need for expensive and cumbersome equipment. This has spurred...
-
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
PublikacjaIn this paper, the feed-forward backpropagation neural network (FFBPNN) is used to propose a new formulation for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis. The data include information about the dimensions of the concrete cylinders (diameter, length) and the total thickness of FRP layers, unconfined ultimate concrete...
-
Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis
PublikacjaIn this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...