Filtry
wszystkich: 1091
-
Katalog
- Publikacje 584 wyników po odfiltrowaniu
- Czasopisma 26 wyników po odfiltrowaniu
- Konferencje 4 wyników po odfiltrowaniu
- Osoby 64 wyników po odfiltrowaniu
- Projekty 5 wyników po odfiltrowaniu
- Kursy Online 129 wyników po odfiltrowaniu
- Wydarzenia 2 wyników po odfiltrowaniu
- Dane Badawcze 277 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: staff training week
-
Performance-driven yield optimization of high-frequency structures by kriging surrogates
PublikacjaUncertainty quantification is an important aspect of engineering design, as manufacturing toler-ances may affect the characteristics of the structure. Therefore, quantification of these effects is in-dispensable for adequate assessment of the design quality. Toward this end, statistical analysis is performed, for reliability reasons, using full-wave electromagnetic (EM) simulations. Still, the computational expenditures associated...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublikacjaHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
Prediction of metal deformation due to line heating; an alternative method of mechanical bending, based on artificial neural network approach
PublikacjaLine heating is one of the alternative methods of forming metals and this kind of forming uses the heating torch as a source of heat input. During the process, many parameters are considered like the size of the substrate, thickness, cooling method, source power intensity, the travel speed of the power source, the sequence of heating, and so on. It is important to analyze the factors affecting the...
-
Challenges and Perspectives of Nature-Based Wastewater Treatment and Reuse in Rural Areas of Central and Eastern Europe
Publikacjan Central and Eastern Europe, about one-third of the population lives in small settlements (<2000 PE). Since the current European Urban Wastewater Treatment Directive (91/271/EEC) does not clearly regulate the collection and treatment of wastewater from these settlements, countries solve the problem individually. Simple and robust technologies such as nature-based treatment systems could be the solution and are widely applied in...
-
Do the young employees perceive themselves as digitally competent and does it matter?
PublikacjaPurpose – The study aims to examine the digital competence of young employees (under 30 years of age) who graduated from the technical university. Self-assessment of selected digital competencies was examined along with the determination of a self-efficacy level in the area of using digital competencies. Design/methodology/approach – Quantitative research was conducted using the computer-assisted web interview method on a sample...
-
Transfer learning in imagined speech EEG-based BCIs
PublikacjaThe Brain–Computer Interfaces (BCI) based on electroencephalograms (EEG) are systems which aim is to provide a communication channel to any person with a computer, initially it was proposed to aid people with disabilities, but actually wider applications have been proposed. These devices allow to send messages or to control devices using the brain signals. There are different neuro-paradigms which evoke brain signals of interest...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublikacjaLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Multicomponent ionic liquid CMC prediction
PublikacjaWe created a model to predict CMC of ILs based on 704 experimental values published in 43 publications since 2000. Our model was able to predict CMC of variety of ILs in binary or ternary system in a presence of salt or alcohol. The molecular volume of IL (Vm), solvent-accessible surface (Sˆ), solvation enthalpy (DsolvGN), concentration of salt (Cs) or alcohol (Ca) and their molecular volumes (Vms and Vma, respectively) were chosen...
-
An audio-visual corpus for multimodal automatic speech recognition
Publikacjareview of available audio-visual speech corpora and a description of a new multimodal corpus of English speech recordings is provided. The new corpus containing 31 hours of recordings was created specifically to assist audio-visual speech recognition systems (AVSR) development. The database related to the corpus includes high-resolution, high-framerate stereoscopic video streams from RGB cameras, depth imaging stream utilizing Time-of-Flight...
-
RUSSIANS ON THE POLISH LABOUR MARKET
PublikacjaThe article looks into the employment of Russian citizens in Poland in 2004– 2018. It presents the legal basis for Russians’ entering Poland and taking up work without having to seek a work permit, and specifies who must apply for such a permit. Russian citizens can obtain refugee status under the Geneva Convention, which grants them the right to move freely, choose their place of residence and undertake paid employment, while...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Reliable Surrogate Modeling of Antenna Input Characteristics by Means of Domain Confinement and Principal Components
PublikacjaA reliable design of contemporary antenna structures necessarily involves full-wave electromagnetic (EM) analysis which is the only tool capable of accounting, for example, for element coupling or the effects of connectors. As EM simulations tend to be CPU-intensive, surrogate modeling allows for relieving the computational overhead of design tasks that require numerous analyses, for example, parametric optimization or uncertainty...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publikacja(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
EMBOA - affective loop in Socially Assistive Robotics as an intervention tool for children with autism
Kursy OnlineThe aim of the training course "Intensive programmes for higher education learner" within the EMBOA project is to familiarise participants with the use of social robots as an intervention tool for children with autism, emotion recognition and the combination of both methods. Students will be informed about the guidelines and results of the project.
-
[AiU] Contemporary research methodology, evaluation and preservation of historic architecture
Kursy OnlineThis course is compulsory for PhD students assigned to Architecture and Urbanism tracks at Doctoral School at Gdańsk University of Technology. The course is conducted by prof. Sandro Parrinello, Department of Civil Engineering and Architecture of University of Pavia Course type: workshops Total hours of training: 30 teaching hours Classes in hybrid mode (classes conducted online and at the GdańskTech)
-
[AiU]20232024_Challenges and Perspectives in Contemporary Architecture and Urbanism
Kursy OnlineThis course is compulsory for PhD students assigned to Architecture and Urbanism tracks at Doctoral School at Gdańsk University of Technology. The course is conducted by Prof. Marichela Sepe, DICEA / Sapienza University Rome Course type: workshops Total hours of training: 15 teaching hours Classes in online mode (classes conducted online)
-
[AiU] 20232024_Sustainable Design and Environmental Changes
Kursy OnlineThis course is compulsory for PhD students assigned to Architecture and Urbanism tracks at Doctoral School at Gdańsk University of Technology. The course is conducted by Prof. Marichela Sepe, DICEA / Sapienza University Rome Course type: workshops Total hours of training: 15 teaching hours Classes in online mode (classes conducted online)
-
Very low resolution depth images of 200,000 poses
Dane BadawczeA dataset represents simulated images of depth sensor seeing a single human pose, performing 200,000 random gestures. The depth images as vectors of pixels are stored with ground truth positions of every relevant joint.
-
Miernictwo elektryczne na politechnice w Gdańsku w latach 1904–1945
PublikacjaPolitechnika Gdańska została utworzona w 1904 roku. Działalność uczelni nierozerwalnie związana była z losami Gdańska, dlatego w jej historii do 1945 roku można wyróżnić trzy okresy: pruski, Wolnego Miasta Gdańska oraz czasy drugiej wojny światowej. Od początku, jednym z ważniejszych kierunków nauczania była elektrotechnika. Postęp w elektrotechnice nie był możliwy bez rozwoju miernictwa elektrycznego, dlatego przez cały czas działania...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublikacjaHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Graph Representation Integrating Signals for Emotion Recognition and Analysis
PublikacjaData reusability is an important feature of current research, just in every field of science. Modern research in Affective Computing, often rely on datasets containing experiments-originated data such as biosignals, video clips, or images. Moreover, conducting experiments with a vast number of participants to build datasets for Affective Computing research is time-consuming and expensive. Therefore, it is extremely important to...
-
Magnetic Signature Description of Ellipsoid-Shape Vessel Using 3D Multi-Dipole Model Fitted on Cardinal Directions
PublikacjaThe article presents a continuation of the research on the 3D multi-dipole model applied to the reproduction of magnetic signatures of ferromagnetic objects. The model structure has been modified to improve its flexibility - model parameters determined by optimization can now be located in the cuboid contour representing the object's hull. To stiffen the model, the training dataset was expanded to data collected from all four cardinal...
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublikacjaElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
The Effectiveness of Basic Resuscitation Activities Carried out by Combat Paramedics of the Police, as Exemplified by Polish Counterterrorist Units
PublikacjaThe tasks carried out by Police officers are often accompanied by dangerous situations that threaten the life and health of the people involved, the police themselves, and bystanders. It concerns especially counter-terrorism police units whose activities are aimed at terrorists and particularly dangerous criminals, and their course is violent and aggressive. In conjunction with the inability to bring civilian rescue services into...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublikacjaTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile...
-
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublikacjaThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
PublikacjaReflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using...
-
sp2-rich dendrite-like carbon nanowalls as effective electrode for environmental monitoring of explosive nitroaromatic
PublikacjaNitroaromatic compounds are commonly used explosive materials that pose a risk to human health and ecosystems due to their acute toxicity and carcinogenicity. Nitroaromatics have numerous pathways into the environment via discarded munitions (e.g. into the Baltic Sea after World War II), after use in mining operations, and in industrial run-off from factories producing these compounds (which are produced across the world to date)....
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublikacjaStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Psychosocial risks associated with the profession of train driver
PublikacjaExcellent competencies as well as a good physical and mental health are required in train drivers’ profession. Despite the changes in the structure of employment the train drivers above 46 years and job tenure longer than 30 years are the largest group. The generation gap is becoming more pronounced, and its fulfilment will not be easy. It is related not only to training of new personnel but also promotion of healthy work environment...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
PublikacjaSegmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...
-
Functional safety and cyber security analysis for life cycle management of industrial control systems in hazardous plants and oil port critical infrastructure including insurance
PublikacjaThis report addresses selected methodological aspects of proactive reliability, functional safety and cyber security management in life cycle of industrial automation and control systems (IACS) in hazardous plants and oil port critical installations based on the analysis of relevant hazards / threats and evaluation of related risks. In addition the insurance company point of view has been also considered, because nowadays the insurer,...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublikacjaUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublikacjaData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
The innovative approach for using pavement as a fire prevention measure in tunnels
PublikacjaThe paper consists of two main parts: first presents study regarding the typically used pavement structures in tunnels and the second part: the first fire trials of the poroelastic SEPOR (Safe, Eco-friendly POroelastic Road Surface) mixture which was designed to be used among other uses in tunnels. In the first part of the paper different pavement materials, such as cement concrete, asphalt concrete, stone mastic asphalt and porous...
-
Dr. Asmaa Mahfoud Al-Hakimi PhD
OsobyDr. ASMA’A MAHFOUD HEZAM AL-HAKIMY from Yemen was born in Egypt 9th October. Received Diploma in Computer Programming in 2006 from University of Science and Technology Sanaa Yemen. Received Bachelor’s Degree in Computer Studies in 2008 from NORTHUMBRIA Newcastle University UK. Received master’s degree in Software Engineering in 2011 from STAFFORDSHIRE University, UK. Received PhD in Software Engineering from Universiti Putra Malaysia....
-
Koncepcja logistycznego usprawnienia magazynu cross-dockowego przedsiębiorstwa X
PublikacjaCelem artykułu jest przedstawienie koncepcji logistycznego usprawnienia magazynu cross- -dockowego przedsiębiorstwa X. W oparciu o informacje dotyczące stanu faktycznego maga- zynu zostały przeprowadzone badania procesów magazynowych. Po przeprowadzeniu identyfikacji problemów zostały zaproponowane usprawnienia wybranego procesu magazynowego, które polegały na propozycji zmiany sposobu zagospodarowania magazynu. Do tego...
-
Platforma edX - nowe podejście do kursów online
PublikacjaWspółczesne metody nauczania na odległość zmieniają się dynamicznie. Powstają światowe konsorcja podejmujące starania zapewnienia dostępu do edukacji na najwyższym poziomie z wykorzystaniem Internetu. Jedną z takich prób jest platforma edX. Jej rozwój zapoczątkowały niemal 2 lata temu MIT i Harvard. Obecnie zespół liczy już 30 uczelni z całego świata. Renoma ośrodków naukowych biorących udział w projekcie przyciągnęła już ponad...
-
Rzeczywistość rozszerzona – potencjał w kształceniu (przyszłych) pomorskich inżynierów
PublikacjaEdukacja młodzieży w zakresie nauk eksperymentalnych – takich jak chemia i fizyka – stanowi obecnie w obliczu ograniczeń zaplecza dydaktycznego w szkołach ogromne wyzwanie. Placówki edukacyjne nie posiadają często odpowiednich laboratoriów, lecz dysponują pracowniami komputerowymi. W ramach Projektu EDUAR, współfinansowanego przez NCBiR, przeprowadzono badania w 20 szkołach – po 10 z obszarów wiejskich i miejskich, podczas których...
-
[NF] Physics research methods. Part III
Kursy OnlineKurs realizowany wspólnie dla doktorantów szkoły doktorskiej i studiów doktoranckich The course is conducted jointly for PhD students of the doctoral school and doctoral studies Franco Bagnoli, University of Florence, Italy - "Thermodynamics, Statistical Mechanics, and Kinetic Gas Theory https://enauczanie.pg.edu.pl/moodle/course/view.php?id=5259 Course type: lecture Total hours of training (part III): 15 teaching hours