Wyniki wyszukiwania dla: CONTINUAL LEARNING · MODEL MERGING
-
Lifelong Learning Idea in Architectural Education
PublikacjaThe recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...
-
Thriving in multicultural workplace
PublikacjaThriving at work is defined as the psychological state that links both a sense of vitality and learning. The vitality component of thriving may be seen as positive energy, while learning enhances a sense of competence and efficacy. Thriving sheds new light on individual psychological functioning and the experience of growth in the work context. Thriving at work promotes growth through playing an active role in interaction with...
-
THE ONLINE APPLICATION AND E-LEARNING IN THE COMPETENCE-BASED MANAGEMENT IN PUBLIC ADMINISTRATION ORGANIZATIONS
PublikacjaThe integration of effective management of work-related processes and utilization of human resources potential leads to the development of organization. The purpose of this paper was to examine how the principles of competences-based management can be introduced to enhance organization’s effectiveness in human resources management. A model of assessment and development of competences-based management, embracing an online application...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Adaptive Hounsfield Scale Windowing in Computed Tomography Liver Segmentation
PublikacjaIn computed tomography (CT) imaging, the Hounsfield Unit (HU) scale quantifies radiodensity, but its nonlinear nature across organs and lesions complicates machine learning analysis. This paper introduces an automated method for adaptive HU scale windowing in deep learning-based CT liver segmentation. We propose a new neural network layer that optimizes HU scale window parameters during training. Experiments on the Liver Tumor...
-
How personality traits, sports anxiety, and general imagery could influence the physiological response measured by SCL to imagined situations in sports?
Dane BadawczeThe data were collected to understand how individual differences in personality (e.g. neuroticism), general imagery, and situational sports anxiety are linked to arousal measuring with skin conductance level (SCL) in situational imagery (as scripted for sport-related scenes). Thirty persons participated in the study, aged between 14 and 42 years, with...
-
A Mammography Data Management Application for Federated Learning
PublikacjaThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Double Bias of Mistakes: Essence, Consequences, and Measurement Method
PublikacjaThere is no learning without mistakes. However, there is a clash between‘positive attitudes and beliefs’regarding learning processes and the ‘negative attitudes and beliefs’towardthese being accompanied bymistakes. Thisclash exposesa cognitive bias towardmistakesthat might block personal and organizational learning. This study presents an advanced measurement method to assess thebias of mistakes. The essence of it is the...
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublikacjaW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks
PublikacjaThe increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublikacjaText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Personal bankruptcy prediction using machine learning techniques
PublikacjaIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublikacjaIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublikacjaBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Machine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects
PublikacjaMachine Learning Assisted Interactive Multi-objectives Optimization Framework: A Proposed Formulation and Method for Overtime Planning in Software Development Projects Hammed A. Mojeed & Rafal Szlapczynski Conference paper First Online: 14 September 2023 161 Accesses Part of the Lecture Notes in Computer Science book series (LNAI,volume 14125) Abstract Software development project requires proper planning to mitigate risk and...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublikacjaThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Student model representation for pedagogical virtual mentors
PublikacjaThe paper concerns technological aspects of virtual mentors construction, especially concentrating on the student model representation. The article distinguishes several types of information that is gathered by the pedagogical agents and other educational platforms, including student knowledge model, student progress tracking, interaction process patterns and learner preferences. A set of technologies used for the student model...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublikacjaVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Learning and memory processes in autonomous agents using an intelligent system of decision-making
PublikacjaThis paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...
-
Perspektywy wykorzystania technologii internetowych typu E-learning w dydaktyce szkół wyższych.
PublikacjaArtykuł dotyczy nauczania przez Internet na poziomie uniwersyteckim. Zaprezentowany został model wirtualnego uniwersytetu, który obejmuje materiały dydaktyczne, komunikację, egzaminy i organizację. Artykuł koncentruje się na technicznych zagadnieniach. Przeanalizowano także wpływ wykorzystania technologii E-learning na różne aspekty życia wyższej uczelni.
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublikacjaIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublikacjaThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Optimization of Data Assignment for Parallel Processing in a Hybrid Heterogeneous Environment Using Integer Linear Programming
PublikacjaIn the paper we investigate a practical approach to application of integer linear programming for optimization of data assignment to compute units in a multi-level heterogeneous environment with various compute devices, including CPUs, GPUs and Intel Xeon Phis. The model considers an application that processes a large number of data chunks in parallel on various compute units and takes into account computations, communication including...
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublikacjaKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Optimising approach to designing kernel PCA model for diagnosis purposes with and without a priori known data reflecting faulty states
PublikacjaFault detection plays an important role in advanced control of complex dynamic systems since precise information about system condition enables efficient control. Data driven methods of fault detection give the chance to monitor the plant state purely based on gathered measurements. However, they especially nonlinear, still suffer from a lack of efficient and effective learning methods. In this paper we propose the two stages learning...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublikacjaThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Tacit knowledge acquisition & sharing, and its influence on innovations: A Polish/US cross-country study
PublikacjaThis study measures the relationship between tacit knowledge sharing and innovation in the Polish (n=350) and US (n=379) IT industries. Conceptually, the study identifies the potential sources of tacit knowledge development by individuals. That is, the study examines how “learning by doing” and “learning by interaction” lead to a willingness to share knowledge and, as a consequence, to support process and product/service innovation....
-
Voice command recognition using hybrid genetic algorithm
PublikacjaAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
PRZYKŁAD MODELU GRY FABULARNEJ WSPIERAJĄCY PROCES ZAANGAŻOWANIA I MOTYWACJI STUDENTÓW WYŻSZYCH UCZELNI TECHNICZNYCH
PublikacjaArtykuł prezentuje koncepcję budowy uniwersalnego scenariusza gry fabularnej, która pomaga zbudować zaangażowanie wśród studentów uczelni technicznych. Jednym ze sposobów na wzmożenie motywacji w procesie uczenia się jest gamifikacja. Gdy gamifikacja wspiera proces nauczania często tworzone są modele tematycznie związane z problematyką danego przedmiotu. Scenariusz proponowanej gry jest uniwersalny i można go wykorzystać w ramach...
-
From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition
PublikacjaRecently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublikacjaFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
The trajectories of the financial crisis of companies at risk of bankruptcy
PublikacjaThis article concerns the assessment of the trajectory of the collapse of enterprises in Central Europe. The author has developed a model of a Kohonen artificial neural network. This model was used to determine 6 different classes of risk and was allowed to graphically determine the 5- to 10-year trajectory of going bankrupt. The study used data on 140 companies listed on the Warsaw Stock Exchange. This population was divided into...
-
Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters
PublikacjaSmart meters in road lighting systems create new opportunities for automatic diagnostics of undesirable phenomena such as lamp failures, schedule deviations, or energy theft from the power grid. Such a solution fits into the smart cities concept, where an adaptive lighting system creates new challenges with respect to the monitoring function. This article presents research results indicating the practical feasibility of real‐time...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Transformational leadership for researcher’s innovativeness in the context of tacit knowledge and change adaptability
PublikacjaThis study explores how a learning culture supported by transformational leadership influences tacit knowledge sharing and change adaptability in higher education and how these relations impact this sector’s internal and external innovativeness. The empirical model was tested on a sample of 368 Polish scientific staff using the structural equation modeling (SEM) method. Then results were expanded by applying OLS regression using...
-
Dokształcanie na odległość kandydatów na studia politechniczne - model DOROTKA
PublikacjaW artykule przedstawiono potrzebę dokształcania kandydatów na studia politechniczne i podjęte w tym celu działania w ramach powołanego Konsorcjum Uczelni Technicznych. Zaprezentowano model z wykorzystaniem systemu LMS (ang. Learning Management System) - DOROTKA (Doskonalenie Organizacji, ROzwoju oraz Tworzenia Kursów Akademickich przez Internet), wspierający działania związane z uruchomieniem kursów wyrównawczych z matematyki i...
-
Deep learning for ultra-fast and high precision screening of energy materials
PublikacjaSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
CAD. Integrated Architectural Design, MSc Arch (2023/24)
Kursy OnlineDetailed understanding of optimizing the design process using parametric BIM (Building Information Modeling) in the Autodesk Revit Architecture program. Practical design exercises included familiarize students with methods of integrating parametric design and exchanging data with other CAD/BIM programs, modifying parametric objects and generating automatic 2D/3D architectural documentation. The lesson plan introduces students to...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublikacjaCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Discovering Rule-Based Learning Systems for the Purpose of Music Analysis
PublikacjaMusic analysis and processing aims at understanding information retrieved from music (Music Information Retrieval). For the purpose of music data mining, machine learning (ML) methods or statistical approach are employed. Their primary task is recognition of musical instrument sounds, music genre or emotion contained in music, identification of audio, assessment of audio content, etc. In terms of computational approach, music databases...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublikacjaAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...