Wyniki wyszukiwania dla: QUALITY OF LEARNING
-
Quality negotiation mechanism for e-learning platforms
PublikacjaZarządzanie jakością w aplikacjach działających w środowiskach sieci WEB opiera się na zadaniach związanych z wykrywaniem jakości połączenia klient - serwer oraz na optymalnym przydziale zasobów wedle jakości takowego połączenia. Optymalne zarządzanie jakością zależy od wypracowanego kompromisu pomiędzy jakością łącza a jakości transportowanego łączem zasobu. Artykuł opisuje możliwy do implementacji mechanizm odpowiedzialny za...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Can Evaluation Patterns Enable End Users to Evaluate the Quality of an e-learning System? An Exploratory Study.
PublikacjaThis paper presents the results of an exploratory study whose main aim is to verify if the Pattern-Based (PB) inspection technique enables end users to perform reliable evaluation of e-learning systems in real work-related settings. The study involved 13 Polish and Italian participants, who did not have an HCI background, but used e-learning platforms for didactic and/or administrative purposes. The study revealed that the participants...
-
Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods
PublikacjaOne of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at...
-
Basics of Deep Learning 24/25
Kursy Online -
High Energy Quality of Buildings 2022/23
Kursy Online -
High Energy Quality of Buildings 2023/24
Kursy Online -
High Energy Quality of Buildings 2024/25
Kursy Online -
Fundamentals of Quality Management - Organizational Excellence 4.0 2022/2023
Kursy Online -
Supporting First Year Students Through Blended-Learning - Planning Effective Courses and Learner Support
PublikacjaHigher education has been actively encouraged to find more effective and flaxible delivery models to provide all students with access to good quality learning experiences. This paper describes students opinion about using e-learning techniques and their participation in courses provided in different ways as additional help and expectations of first year students.
-
Dataset Characteristics and Their Impact on Offline Policy Learning of Contextual Multi-Armed Bandits
PublikacjaThe Contextual Multi-Armed Bandits (CMAB) framework is pivotal for learning to make decisions. However, due to challenges in deploying online algorithms, there is a shift towards offline policy learning, which relies on pre-existing datasets. This study examines the relationship between the quality of these datasets and the performance of offline policy learning algorithms, specifically, Neural Greedy and NeuraLCB. Our results...
-
Revisiting Supervision for Continual Representation Learning
Publikacja"In the field of continual learning, models are designed to learn tasks one after the other. While most research has centered on supervised continual learning, there is a growing interest in unsupervised continual learning, which makes use of the vast amounts of unlabeled data. Recent studies have highlighted the strengths of unsupervised methods, particularly self-supervised learning, in providing robust representations. The improved...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublikacjaThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
A Mammography Data Management Application for Federated Learning
PublikacjaThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms
PublikacjaLymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...
-
Introduction to the special issue on machine learning in acoustics
PublikacjaWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Active Learning Based on Crowdsourced Data
PublikacjaThe paper proposes a crowdsourcing-based approach for annotated data acquisition and means to support Active Learning training approach. In the proposed solution, aimed at data engineers, the knowledge of the crowd serves as an oracle that is able to judge whether the given sample is informative or not. The proposed solution reduces the amount of work needed to annotate large sets of data. Furthermore, it allows a perpetual increase...
-
Processes of enhancing the intelligence of Learning Organizations on the basis of Competence Centers
PublikacjaThe process of organizational learning and proper knowledge management became today one of the major challenges for the organization acting in the knowledge-based economy. According to the observations of the authors of this paper the demand for formalization of knowledge management processes and organizational learning is particularly evident in research institutions, established either by the universities, or the companies. The...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublikacjaThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
Assessment of student language skills in an e-learning environment
PublikacjaThis article presents the role of various assessment structures that can be used in a VLE. e-Learning language courses offer tutors a wide range of traditional and computer-generated formative and summative assessment procedures and tools. They help to evaluate each student’s progress, monitor their activities and provide varied support, which comes from the tutor, the course structure and materials as well as other participants....
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Smartphones as tools for equitable food quality assessment
PublikacjaBackground: The ubiquity of smartphones equipped with an array of sophisticated sensors, ample processing power, network connectivity and a convenient interface makes them a promising tool for non-invasive, portable food quality assessment. Combined with the recent developments in the areas of IoT, deep learning algorithms and cloud computing, they present an opportunity for advancing wide-spread, equitable and sustainable food...
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublikacjaText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Piotr Grudowski dr hab. inż.
OsobyDr hab. inż. Piotr Grudowski, profesor w Politechnice Gdańskiej karierę naukową rozpoczynał na Wydziale Mechanicznym Technologicznym Politechniki Gdańskiej w zespole „Inżynierii Jakości i Metrologii”. Stopień doktora nauk technicznych w dyscyplinie budowa i eksploatacja maszyn uzyskał w roku 1993 na Wydziale Mechanicznym PG a stopień doktora habilitowanego nauk ekonomicznych, w dyscyplinie nauk o zarządzaniu, w 2008 roku na Wydziale...
-
An integrated e-learning services management system providing HD videoconferencing and CAA services
PublikacjaIn this paper we present a novel e-learning services management system, designed to provide highly modifiable platform for various e-learning tools, able to fulfill its function in any network connectivity conditions (including no connectivity scenario). The system can scale from very simple setup (adequate for servicing a single exercise) to a large, distributed solution fit to support an enterprise. Strictly modular architecture...
-
Data augmentation for improving deep learning in image classification problem
PublikacjaThese days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...
-
High-quality academic teachers in business school. The case of The University of Gdańsk, Poland
PublikacjaThe Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublikacjaMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Using Isolation Forest and Alternative Data Products to Overcome Ground Truth Data Scarcity for Improved Deep Learning-based Agricultural Land Use Classification Models
PublikacjaHigh-quality labelled datasets represent a cornerstone in the development of deep learning models for land use classification. The high cost of data collection, the inherent errors introduced during data mapping efforts, the lack of local knowledge, and the spatial variability of the data hinder the development of accurate and spatially-transferable deep learning models in the context of agriculture. In this paper, we investigate...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
The High Quality Business School Academic Teacher of the 21st Century – Polish Students’ Perspective
PublikacjaThe literature shows that the success and competence of future managers depend on the quality of their academic teachers. Moreover high quality study requires high quality lecturing/teaching that creates an environment in which deep learning outcomes are made possible for students. The aim was to identify the characteristics of the academic teacher working at business schools, according to the expectations of Polish students...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
PROPRIETARY SOFTWARE IN TECHNICAL HIGHER EDUCATION
PublikacjaThe authors present a relatively easy way to extend the quality of education in professional studies (engineering) on major “Geodesy and Cartography”. They indicate the possibility to deepen students’ knowledge by using in the educational process proprietary software enriching education. The authors use their own experiences, results of the cooperation with employers, as well as the effects of scientific research to introduce into...
-
PROPRIETARY SOFTWARE IN TECHNICAL HIGHER EDUCATION
PublikacjaThe authors present a relatively easy way to extend the quality of education in professional studies (engineering) on major “Geodesy and Cartography”. They indicate the possibility to deepen students’ knowledge by using in the educational process proprietary software enriching education. The authors use their own experiences, results of the cooperation with employers, as well as the effects of scientific research to introduce...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublikacjaLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublikacjaControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
The effects of relational and psychological capital on work engagement: the mediation of learning goal orientation
PublikacjaPurpose – This paper proposes a research model in which learning goal orientation (LGO) mediates the impacts of relational capital and psychological capital (PsyCap) on work engagement. Design/methodology/approach – Data obtained from 475 managers and employees in the manufacturing and service industries in Poland were utilized to assess the linkages given above. Common method variance was controlled by the unmeasured latent method...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublikacjaLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
THE INFLUENCE OF QUESTION SET ON STUDENT QUIZ RESULTS
PublikacjaThe advent of e-Learning tools allowing for automated online test grading will probably increase the frequency of using tests in technical education. The same tools may provide for measures of test question quality. By purposely crafting question sets, test grading may serve different goals. The paper contains examples and test study with score histograms.
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Creating a radiological database for automatic liver segmentation using artificial intelligence.
PublikacjaImaging in medicine is an irreplaceable stage in the diagnosis and treatment of cancer. The subsequent therapeutic effect depends on the quality of the imaging tests performed. In recent years we have been observing the evolution of 2D to 3D imaging for many medical fields, including oncological surgery. The aim of the study is to present a method of selection of radiological imaging tests for learning neural networks.
-
Comparative Analysis of Text Representation Methods Using Classification
PublikacjaIn our work, we review and empirically evaluate five different raw methods of text representation that allow automatic processing of Wikipedia articles. The main contribution of the article—evaluation of approaches to text representation for machine learning tasks—indicates that the text representation is fundamental for achieving good categorization results. The analysis of the representation methods creates a baseline that cannot...
-
Improving Effectiveness of SVM Classifier for Large Scale Data
PublikacjaThe paper presents our approach to SVM implementation in parallel environment. We describe how classification learning and prediction phases were pararellised. We also propose a method for limiting the number of necessary computations during classifier construction. Our method, named one-vs-near, is an extension of typical one-vs-all approach that is used for binary classifiers to work with multiclass problems. We perform experiments...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublikacjaThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...