Filters
total: 1125
filtered: 763
-
Catalog
Chosen catalog filters
Search results for: ARTIFICIAL INTELLIGENCE (AI)
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublicationElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
Adjusting the Stiffness of Supports during Milling of a Large-Size Workpiece Using the Salp Swarm Algorithm
PublicationThis paper concerns the problem of vibration reduction during milling. For this purpose, it is proposed that the standard supports of the workpiece be replaced with adjustable stiffness supports. This affects the modal parameters of the whole system, i.e., object and its supports, which is essential from the point of view of the relative tool–workpiece vibrations. To reduce the vibration level during milling, it is necessary to...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Condition-Based Monitoring of DC Motors Performed with Autoencoders
PublicationThis paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
The potential interaction of environmental pollutants and circadian rhythm regulations that may cause leukemia
PublicationTumor suppressor genes are highly affected during the development of leukemia, including circadian clock genes. Circadian rhythms constitute an evolutionary molecular machinery involving many genes, such as BMAL1, CLOCK, CRY1, CRY2, PER1, PER2, REV-ERBa, and RORA, for tracking time and optimizing daily life during day-night cycles and seasonal changes. For circulating blood cells many of these genes coordinate their proliferation,...
-
How Machine Learning Contributes to Solve Acoustical Problems
PublicationMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Development of cluster analysis methodology for identification of model rainfall hyetographs and its application at an urban precipitation field scale
PublicationDespite growing access to precipitation time series records at a high temporal scale, in hydrology, and particularly urban hydrology, engineers still design and model drainage systems using scenarios of rainfall temporal distributions predefined by means of model hyetographs. This creates the need for the availability of credible statistical methods for the development and verification of already locally applied model hyetographs....
-
Application of Wavelet Transform and Fractal Analysis for Esophageal pH-Metry to Determine a New Method to Diagnose Gastroesophageal Reflux Disease
PublicationIn this paper, a new method for analysing gastroesophageal reflux disease (GERD) is shown. This novel method uses wavelet transform (WT) and wavelet-based fractal analysis (WBFA) on esophageal pH-metry measurements. The esophageal pH-metry is an important diagnostic tool supporting the physician’s work in diagnosing some forms of reflux diseases. Interpreting the results of 24-h pH-metry monitoring is time-consuming, and the conclusions...
-
Forecasting risks and challenges of digital innovations
PublicationForecasting and assessment of societal risks related to digital innovation systems and services is an urgent problem, because these solutions usually contain artificial intelligence algorithms which learn using data from the environment and modify their behaviour much beyond human control. Digital innovation solutions are increasingly deployed in transport, business and administrative domains, and therefore, if abused by a malicious...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Greencoin as an AI-Based Solution Shaping Climate Awareness.
PublicationOur research aim was to define possible AI-based solutions to be embedded in the Green- coin project, designed as a supportive tool for smart cities to achieve climate neutrality. We used Kamrowska-Załuska’s approach for evaluating AI-based solutions’ potential in urban planning. We narrowed down the research to the educational and economic aspects of smart cities. Furthermore, we used a systematic literature review. We propose...
-
Influence of algorithmic management practices on workplace well-being – evidence from European organisations
PublicationPurpose Existing literature on algorithmic management practices –defined as autonomous data-driven decision making in people's management by adoption of self-learning algorithms and artificial intelligence – suggests complex relationships with employees' well-being in the workplace. While the use of algorithms can have positive impacts on people-related decisions, they may also adversely influence job autonomy, perceived justice...
-
Computational Approaches to Modeling Artificial Emotion – An Overview of the Proposed Solutions
PublicationCybernetic approach to modeling artificial emotion through the use of different theories of psychology is considered in this paper, presenting a review of twelve proposed solutions: ActAffAct, FLAME, EMA, ParleE, FearNot!, FAtiMA, WASABI, Cathexis, KARO, MAMID, FCM, and xEmotion. The main motivation for this study is founded on the hypothesis that emotions can play a definite utility role of scheduling variables in the construction...
-
Computational collective intelligence for enterprise information systems
PublicationCollective intelligence is most often understood as a kind of intelligence which arises on the basis of a group (collective) of autonomous unites (people, systems) which is taskoriented. There are two important aspects of an intelligent collective: The cooperation aspect and the competition aspect (Levy 1997). The first of them means the possibility for integrating the decisions made by the collective members for creating the decision of...
-
Threat intelligence platform for the energy sector
PublicationIn recent years, critical infrastructures and power systems in particular have been subjected to sophisticated cyberthreats, including targeted attacks and advanced persistent threats. A promising response to this challenging situation is building up enhanced threat intelligence that interlinks information sharing and fine-grained situation awareness. In this paper a framework which integrates all levels of threat intelligence...
-
Leveraging Generative AI Tools for UX Design in Lean and Agile Projects
PublicationRecent advancements in Generative AI (GenAI) open new opportunities to improve User Experience (UX) practitioners’ efficiency in their projects. Due to intensive teamwork caused by time pressure and readiness for rapid changes, Lean and Agile project management seems particularly predestined for easy adoption of GenAI-supported UX design methods. However, precipitate and spontaneous leveraging of GenAI tools to UX design bears...
-
Measuring the effectiveness of digital communication - social media performance: an example of the role played by AI-assisted tools at a university
PublicationThe aim of the article is to show the role played by AI-powered tools in measuring the effectiveness of digital communication in social media using a university case study. Therefore, a research problem was formulated to identify the metrics (KPIs) used to measure the effectiveness – non-financial outcomes – of digital social media communication at the university using AI tools. The literature review on the role of AI in digital...
-
On evolutionary computing in multi-ship trajectory planning, Applied Intelligence
PublicationThe paper presents the updated version of Evolutionary Sets of Safe Ship Trajectories: a method which applies evolutionary algorithms and some of the assumptions of game theory to solving ship encounter situations. For given positions and motion parameters of the ships,the method finds a near optimal set of safe trajectories of all ships involved in an encounter. The method works in real time and the solutions must be returned...
-
Implementation of Business Intelligence in an IT organization - the concept of an evaluation model
PublicationThis paper presents the issue of assessing the validity and effectiveness of implementing a Business Intelligence system in an IT Support Organization. This entity provides IT services to external clients involving, in particular, the storage and processing of large amounts of data. The vast amount of realized projects and also incidents reported in connection with those projects prevented effective decisions from being made without...
-
Smart Embedded Systems with Decisional DNA Knowledge Representation
PublicationEmbedded systems have been in use since the 1970s. For most of their history embedded systems were seen simply as small computers designed to accomplish one or a few dedicated functions; and they were usually working under limited resources i.e. limited computing power, limited memories, and limited energy sources. As such, embedded systems have not drawn much attention from researchers, especially from those in the artificial...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublicationThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
The KLC Cultures' Synergy Power, Trust, and Tacit Knowledge for Organizational Intelligence
PublicationThis paper examines the impact of knowledge, learning, and collaboration culturessynergy (the KLC approach) on organizational adaptability. The SEM analysis method was applied to verify the critical assumption of this paper: that the KLC approach and trust support knowledge-sharing processes (tacit and explicit) and are critical for organizational intelligence activation.Specifically, the empirical evidence, based on a 640-case...
-
AITP - AI Thermal Pedestrians Dataset
PublicationEfficient pedestrian detection is a very important task in ensuring safety within road conditions, especially after sunset. One way to achieve this goal is to use thermal imaging in conjunction with deep learning methods and an annotated dataset for models training. In this work, such a dataset has been created by capturing thermal images of pedestrians in different weather and traffic conditions. All images were manually annotated...
-
Development of an AI-based audiogram classification method for patient referral
PublicationHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Processes of enhancing the intelligence of Learning Organizations on the basis of Competence Centers
PublicationThe process of organizational learning and proper knowledge management became today one of the major challenges for the organization acting in the knowledge-based economy. According to the observations of the authors of this paper the demand for formalization of knowledge management processes and organizational learning is particularly evident in research institutions, established either by the universities, or the companies. The...
-
Environmental degradation of titanium alloy in artificial saliva
PublicationThe titanium and its alloys are potentially prone to hydrogen embrittlement, including those proposed for dental implants. The research has been aimed to assess a susceptibility to environment-enhanced degradation of the Ti-13Zr-13Nb alloy in artificial saliva with or without hydrofluoric acid, subject or not to cathodic polarisation. The results have shown that even if artificial saliva is safe environment, both cathodic polarization...
-
Towards an experience based collective computational intelligence for manufacturing
PublicationKnowledge based support can play a vital role not only in the new fast emerging information and communication technology based industry, but also in traditional manufacturing. In this regard, several domain specific research endeavors have taken place in the past with limited success. Thus, there is a need to develop a flexible domain independent mechanism to capture, store, reuse, and share manufacturing knowledge. Consequently,...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublicationHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
DUABI - Business Intelligence Architecture for Dual Perspective Analytics
PublicationA significant expansion of Big Data and NoSQL databases made it necessary to develop new architectures for Business Intelligence systems based on data organized in a non-relational way. There are many novel solutions combining Big Data technologies with Data Warehousing. However, the proposed solutions are often not sufficient enough to meet the increasing business demands, such as low data latency while still maintaining high...
-
Exploring the Benefits, Challenges, and Opportunities of Collaborative Business Intelligence
PublicationIn traditional business intelligence (BI) settings, the collective decision-making process is often hindered by the absence of knowledge and expertise exchange among various stakeholders, as well as lack of information sharing. The study delves into the concept of Collaborative BI, which aims to overcome these limitations by promoting collaboration, business networking, knowledge sharing, and improved communication among stakeholders....
-
Sztuczny sensor smaku a zmysł smaku
PublicationOmówiono klasy smaku i działanie zmysłu smaku, który odgrywa ogromną rolę w ocenie jakości żywności metodami organoleptycznymi. Metody te nie są w pełni obiektywne, stąd poszukuje się sztucznego sensora smaku. Przedstawiono szereg rozwiązań prowadzących do opracowania sensora smaku na większą skalę. Omówiono wybrane potencjometryczne i woltamperometryczne sensory smaku, a także ich handlowe modele.
-
Peroxymonosulfate-assisted photocatalytic degradation of artificial sweeteners in water
PublicationIn the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate - artificial sweeteners frequently present in wastewaters and surface waters worldwide. The TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation...
-
Emerging strategies for enhancing detection of explosives by artificial olfaction
PublicationExplosives detection systems need to be able to reliably detect a wide range of explosive materials and their vapours. The continued development and improvement of artificial olfaction techniques, including electronic nose (EN), remains important to overcome existing challenges and meet requirements posed by new improvements in the field of explosives. There is an increasingly popular trend aimed at improvement of fundamental metrological...
-
Manufacturing collective intelligence by the means of Decisional DNA and virtual engineering objects, process and factory
PublicationEngineering collective intelligence is paramount in current industrial times. This research proposes and presents case studies for collective knowledge structures required in the industry field. Knowledge structures such as Set of Experience and Decisional DNA are extended into more advanced knowledge structures for manufacturing processes. These structures are called Virtual Engineering Object, Virtual Engineering Process and...
-
Evolution of Animats Following a Moving Target in an Artificial Ecosystem
PublicationMany biological animals, even microscopically small, are able to track moving sources of food. In this paper, we investigate the emergence of such behavior in artificial animals (animats) in a 2-dimensional simulated liquid environment. These "predators" are controlled by evolving artificial gene regulatory networks encoded in linear genomes. The fate of the predators is determined only by their ability to gather food and reproduce—no...
-
Evolution of chemotaxis in single-cell artificial organisms
PublicationThe model of a liquid two-dimensional environment, which is based on physics of diffusion, allows us to simulate the diffusion of morphogenes. Artificial organisms move using a chemotaxis reacting to concentration difference. Organisms are controlled by a gene regulatory network coded in a linear genome and reproduce by division. We made a lot of experiments presenting organisms’ behaviour in various environment conditions. We...
-
Toward a unified model of mobile Business Intelligence (m-BI) acceptance and use
PublicationFactors affecting mobile business intelligence (m-BI) acceptance and use have become an increasingly important topic in practice due to the growing complexity of organizations, and their underlying information systems (IS). Since, one can notice considerable interest in m-BI, however, to the best of our knowledge few studies (if any) aim to synthesize the existing body of knowledge with regards to the factors affecting m-BI acceptance...
-
The KLC Cultures, Tacit Knowledge, and Trust Contribution to Organizational Intelligence Activation
PublicationIn this paper, the authors address a new approach to three organizational, functional cultures: knowledge culture, learning culture, and collaboration culture, named together the KLC cultures. Authors claim that the KLC approach in knowledge-driven organizations must be designed and nourished to leverage knowledge and intellectual capital. It is suggested that they are necessary for simultaneous implementation because no one of...
-
Environmental degradation of Ti alloys in artificial saliva and a role of fluorides
PublicationThe titanium and its alloys are potentially prone to hydrogen embrittlement, including those proposed for dental implants. The research has been aimed to assess a susceptibility to environment-enhanced degradation of the Ti-13Zr-13Nb alloy in artificial saliva with or without hydrofluoric acid, subject or not to cathodic polarisation. The results have shown that even if artificial saliva is safe environment, both cathodic polarization...