Filters
total: 712
filtered: 627
Search results for: machine learning, music analysis, tonality
-
Music Data Processing and Mining in Large Databases for Active Media
PublicationThe aim of this paper was to investigate the problem of music data processing and mining in large databases. Tests were performed on a large data-base that included approximately 30000 audio files divided into 11 classes cor-responding to music genres with different cardinalities. Every audio file was de-scribed by a 173-element feature vector. To reduce the dimensionality of data the Principal Component Analysis (PCA) with variable...
-
AUDIO SIGNAL EQUALIZATION BASED ON IMPULSE RESPONSE OF A LISTENING ROOM AND MUSIC CONTENT REPRODUCED
PublicationA research study presents investigations of the influence of the room acoustics on the frequency characteristic of the audio signal playback. First, a concept of a novel spectral equalization method of the room acoustic conditions is introduced. On the basis of the room spectral response, a system for room acoustics compensation based on an equalizer designed is proposed. The system settings depend on music genre recognized automatically....
-
Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy
PublicationIn dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...
-
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble
PublicationThis paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters
PublicationSmart meters in road lighting systems create new opportunities for automatic diagnostics of undesirable phenomena such as lamp failures, schedule deviations, or energy theft from the power grid. Such a solution fits into the smart cities concept, where an adaptive lighting system creates new challenges with respect to the monitoring function. This article presents research results indicating the practical feasibility of real‐time...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublicationThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublicationW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
An Approach to Bass Enhancement in Portable Computers Employing Smart Virtual Bass Synthesis Algorithms
PublicationThe aim of this paper is to present a novel approach to the Virtual Bass Synthesis (VBS) algorithms applied to portable computers. The developed algorithms are related to intelligent, rule-based setting of synthesis parameters according to music genre of an audio excerpt and to the type of a portable device in use. To find optimum synthesis parameters of the VBS algorithms, subjective listening tests based on a parametric procedure...
-
Are Pair Trading Strategies Profitable During COVID-19 Period?
PublicationPair trading strategy is a well-known profitable strategy in stock, forex, and commodity markets. As most of the world stock markets declined during COVID-19 period, therefore this study is going to observe whether this strategy is still profitable after COVID-19 pandemic. One of the powerful algorithms of DBSCAN under the umbrella of unsupervised machine learning is applied and three clusters were formed by using market and accounting...
-
How high-tech solutions support the fight against IUU and ghost fishing: a review of innovative approaches, methods, and trends
PublicationIllegal, Unreported, and Unregulated fishing is a major threat to human food supply and marine ecosystem health. Not only is it a cause of significant economic loss but also its effects have serious long-term environmental implications, such as overfishing and ocean pollution. The beginning of the fight against this problem dates since the early 2000s. From that time, a number of approaches and methods have been developed and reported....
-
Methodology of Constructing and Analyzing the Hierarchical Contextually-Oriented Corpora
PublicationMethodology of Constructing and Analyzing the Hierarchical structure of the Contextually-Oriented Corpora was developed. The methodology contains the following steps: Contextual Component of the Corpora’s Structure Building; Text Analysis of the Contextually-Oriented Hierarchical Corpus. Main contribution of this study is the following: hierarchical structure of the Corpus provides advanced possibilities for identification of the...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Eksperymentalne i numeryczne badania parametrów dynamicznych trybuny stalowej
PublicationTrybuny stalowe to konstrukcje, które odnajdują swoje zastosowanie głównie podczas wydarzeń sportowych, koncertów muzycznych oraz innych wydarzeń, którym towarzyszą rytmiczne aktywności widzów i głośna muzyka. Ze względu na smukłość oraz lekkość elementów z jakich wykonana jest konstrukcja trybuny jest ona bardzo łatwo wzbudzana przez ludzi do drgań. Z przeprowadzonej w pracy [4] analizy modalnej wynika, że masa ludzi prowadzi...
-
Monitoring the BTEX Volatiles during 3D Printing with Acrylonitrile Butadiene Styrene (ABS) Using Electronic Nose and Proton Transfer Reaction Mass Spectrometry
PublicationWe describe a concept study in which the changes of concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and styrene within a 3D printer enclosure during printing with different acrylonitrile butadiene styrene (ABS) filaments were monitored in real-time using a proton transfer reaction mass spectrometer and an electronic nose. The quantitative data on the concentration of the BTEX compounds, in particular...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublicationPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment
PublicationThis paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Examining Feature Vector for Phoneme Recognition / Analiza parametrów w kontekście automatycznej klasyfikacji fonemów
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Automatic audio signal mixing system based on one-dimensional Wave-U-Net autoencoders
PublicationThe purpose of this dissertation is to develop an automatic song mixing system that is capable of automatically mixing a song with good quality in any music genre. This work recalls first the audio signal processing methods used in audio mixing, and it describes selected methods for automatic audio mixing. Then, a novel architecture built based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. Models...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Introduction to the ONDM 2022 special issue
PublicationThis JOCN special issue contains extended versions of selected papers presented at the 26th International Conference on Optical Network Design and Modeling (ONDM 2022), which took place 16–19 May 2022 at Warsaw University of Technology, Warsaw, Poland. The topics covered by the papers represent trends in optical networking research: application of machine learning to network management, cross-layer network performance optimization,...
-
Wpływ struktur wsparcia na efektywność nauczania języka pisanego w środowisku e-learningowym
PublicationThe process of knowledge and language skills development during an online course can be very effective if student engagement in learning is achieved. This can be attained by introducing general and specific support mechanisms prior to the commencement of the course and during it. The former relates to the technological aspect, that is to familiarizing students with the functionalities of the virtual learning environment they will...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Examining Feature Vector for Phoneme Recognition
PublicationThe aim of this paper is to analyze usability of descriptors coming from music information retrieval to the phoneme analysis. The case study presented consists in several steps. First, a short overview of parameters utilized in speech analysis is given. Then, a set of time and frequency domain-based parameters is selected and discussed in the context of stop consonant acoustical characteristics. A toolbox created for this purpose...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Intelligent Audio Signal Processing − Do We Still Need Annotated Datasets?
PublicationIn this paper, intelligent audio signal processing examples are shortly described. The focus is, however, on the machine learning approach and datasets needed, especially for deep learning models. Years of intense research produced many important results in this area; however, the goal of fully intelligent signal processing, characterized by its autonomous acting, is not yet achieved. Therefore, a review of state-of-the-art concerning...
-
Categorization of Cloud Workload Types with Clustering
PublicationThe paper presents a new classification schema of IaaS cloud workloads types, based on the functional characteristics. We show the results of an experiment of automatic categorization performed with different benchmarks that represent particular workload types. Monitoring of resource utilization allowed us to construct workload models that can be processed with machine learning algorithms. The direct connection between the functional...
-
Application of Wavelet Transform and Fractal Analysis for Esophageal pH-Metry to Determine a New Method to Diagnose Gastroesophageal Reflux Disease
PublicationIn this paper, a new method for analysing gastroesophageal reflux disease (GERD) is shown. This novel method uses wavelet transform (WT) and wavelet-based fractal analysis (WBFA) on esophageal pH-metry measurements. The esophageal pH-metry is an important diagnostic tool supporting the physician’s work in diagnosing some forms of reflux diseases. Interpreting the results of 24-h pH-metry monitoring is time-consuming, and the conclusions...
-
Limitations of Emotion Recognition from Facial Expressions in e-Learning Context
PublicationThe paper concerns technology of automatic emotion recognition applied in e-learning environment. During a study of e-learning process the authors applied facial expressions observation via multiple video cameras. Preliminary analysis of the facial expressions using automatic emotion recognition tools revealed several unexpected results, including unavailability of recognition due to face coverage and significant inconsistency...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublicationFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Empirical Analysis of Forest Penalizing Attribute and Its Enhanced Variations for Android Malware Detection
PublicationAs a result of the rapid advancement of mobile and internet technology, a plethora of new mobile security risks has recently emerged. Many techniques have been developed to address the risks associated with Android malware. The most extensively used method for identifying Android malware is signature-based detection. The drawback of this method, however, is that it is unable to detect unknown malware. As a consequence of this problem,...
-
Dynamic state assessment of the water turbine with the power of 600 kW
PublicationThe article discusses the results of experimental studies to assess the dynamic state of the turbine set with the Kaplan turbine. The dynamic assessment was made on the basis of appropriate standards, based on the measurement results of selected parameters of vibration, which have been measured for several states of the machine load. In addition, we attempted to identify the causes of the increased vibration levels based on the...
-
AffecTube — Chrome extension for YouTube video affective annotations
PublicationThe shortage of emotion-annotated video datasets suitable for training and validating machine learning models for facial expression-based emotion recognition stems primarily from the significant effort and cost required for manual annotation. In this paper, we present AffecTube as a comprehensive solution that leverages crowdsourcing to annotate videos directly on the YouTube platform, resulting in ready-to-use emotion-annotated...
-
A study on signal processing methods applied to hearing aids
PublicationThis paper presents a short survey on current technology available in hearing aids with a focus on digital signal processing techniques used. First, factors influencing the hearing aid effectiveness are introduced. Then, examples of the present DSP methods and strategies are provided. Also, a description of current limitations of hearing aids and future trends of development are shown. Finally, the notion of computational auditory...
-
LOS and NLOS identification in real indoor environment using deep learning approach
PublicationVisibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Profile irregularities of turned surfaces as a result of machine tool interactions
PublicationThe paper describes the influence of the machining operation on a surface, which disturbs the projection of the tool profile in the form of its relative movements with respect to the object. The elements of the machine tool undergo constant wear during the machining process, it is therefore important to recognize the effects of their influence on the surface's irregularities. Amplitude-frequency analysis of lateral profiles has...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
Novel proposal for V2X systems and WBAN cooperation to improve road safety
PublicationIn this paper, a novel proposal of the automotive Vehicle-to-Everything system solution is presented. In this proposal, there are included the Machine to Machine type communication system and the sensor system based on a short-range the Wireless Body Area Network communication. The aim of this paper is the analysis of the model for communication, especially its architecture and signals structure for the proposed solution. The use...
-
Comparison of Lithuanian and Polish Consonant Phonemes Based on Acoustic Analysis – Preliminary Results
PublicationThe goal of this research is to find a set of acoustic parameters that are related to differences between Polish and Lithuanian language consonants. In order to identify these differences, an acoustic analysis is performed, and the phoneme sounds are described as the vectors of acoustic parameters. Parameters known from the speech domain as well as those from the music information retrieval area are employed. These parameters are...
-
Differentiating patients with obstructive sleep apnea from healthy controls based on heart rate-blood pressure coupling quantified by entropy-based indices
PublicationWe introduce an entropy-based classification method for pairs of sequences (ECPS) for quantifying mutual dependencies in heart rate and beat-to-beat blood pressure recordings. The purpose of the method is to build a classifier for data in which each item consists of two intertwined data series taken for each subject. The method is based on ordinal patterns and uses entropy-like indices. Machine learning is used to select a subset...
-
Augmenting digital documents with negotiation capability
PublicationActive digital documents are not only capable of performing various operations using their internal functionality and external services, accessible in the environment in which they operate, but can also migrate on their own over a network of mobile devices that provide dynamically changing execution contexts. They may imply conflicts between preferences of the active document and the device the former wishes to execute on. In the...
-
Improving all-reduce collective operations for imbalanced process arrival patterns
PublicationTwo new algorithms for the all-reduce operation optimized for imbalanced process arrival patterns (PAPs) are presented: (1) sorted linear tree, (2) pre-reduced ring as well as a new way of online PAP detection, including process arrival time estimations, and their distribution between cooperating processes was introduced. The idea, pseudo-code, implementation details, benchmark for performance evaluation and a real case example...
-
Separability Assessment of Selected Types of Vehicle-Associated Noise
PublicationMusic Information Retrieval (MIR) area as well as development of speech and environmental information recognition techniques brought various tools in-tended for recognizing low-level features of acoustic signals based on a set of calculated parameters. In this study, the MIRtoolbox MATLAB tool, designed for music parameter extraction, is used to obtain a vector of parameters to check whether they are suitable for separation of...
-
Basic Hand Gestures Classification Based on Surface Electromyography
PublicationThis paper presents an innovative classification system for hand gestures using 2-channel surface electromyography analysis. The system developed uses the Support Vector Machine classifier, for which the kernel function and parameter optimisation are conducted additionally by the Cuckoo Search swarm algorithm. The system developed is compared with standard Support Vector Machine classifiers with various kernel functions. The average...
-
Computational Simulation of the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublicationThis chapter investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organisational culture results in better mistake management and thus better organisational learning, (2) Effective organisational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning...
-
An Adaptive Network Model Simulating the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublicationThis paper investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organizational culture results in better mistake management and thus better organizational learning, (2) Effective organizational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader’s behavior must align for the best learning effects....
-
An Adaptive Network Model Simulating the Effects of Different Culture Types and Leader Qualities on Mistake Handling and Organisational Learning
PublicationThis paper investigates computationally the following research hypotheses: (1) Higher flexibility and discretion in organizational culture results in better mistake management and thus better organizational learning, (2) Effective organizational learning requires a transformational leader to have both high social and formal status and consistency, and (3) Company culture and leader's behavior must align for the best learning effects....