Filters
total: 627
filtered: 565
Search results for: MICROWAVE
-
On deterministic procedures for low-cost multi-objective design optimization of miniaturized impedance matching transformers
PublicationPurpose This paper aims to investigate deterministic strategies for low-cost multi-objective design optimization of compact microwave structures, specifically, impedance matching transformers. The considered methods involve surrogate modeling techniques and variable-fidelity electromagnetic (EM) simulations. In contrary to majority of conventional approaches, they do not rely on population-based metaheuristics, which permit lowering...
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
Recent Advances in Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationDesign of high‐frequency structures, including microwave and antenna components, heavily relies on full‐wave electromagnetic (EM) simulation models. Their reliability comes at a price of a considerable computational cost. This may lead to practical issues whenever numerous EM analyses are to be executed, e.g., in the case of parametric optimization. The difficulties entailed by massive simulations may be mitigated by the use of...
-
Designing a high-sensitivity dual-band nano-biosensor based on petahertz MTMs to provide a perfect absorber for early-stage non-melanoma skin cancer diagnostic
PublicationThe purpose of this study is development of a novel high-performance low-Petahertz (PHz) biosensor for non-melanoma skin cancer (NMSC) diagnosis. The presented device is designed to work within a microwave imaging regime, which is a promising alternative to conventional diagnostic methods such as visual examination, dermoscopy, and biopsy. The suggested biosensor incorporates a dual-band perfect absorber (operating bands at 0.909...
-
Factors causing degradation of sulfadimetoxine
PublicationSulfadimetoxine is a representative of sulfonamide drugs which presence inhibits growth of activated sludge bacteria, rhat is necessary for the effective mineralization of organic and inorganic contaminants. Therefore factors which con prevent this situation are searched. Aim of this study is selection of conditions causing efficien degradation of the drug- sulfadimetoxine. The impact of such aspects as : the type of oxidizing...
-
Comparison of Compact Reduced Basis Method with Different Model Order Reduction Techniques
PublicationDifferent strategies suitable to compare the performance of different model order reduction techniques for fast frequency sweep in finite element analysis in Electromagnetics are proposed and studied in this work. A Frobenius norm error measure is used to describe how good job a reduced-order model is doing with respect to the true system response. In addition, the transfer function correct behavior is monitored by studying the...
-
Optimization of Polycrystalline CVD Diamond Seeding with the Use of sp³/sp² Raman Band Ratio
PublicationThe influence of various nanodiamond colloids used for seeding nondiamond substrates in microwave plasma enhanced chemical vapour deposition diamond process was investigated. Colloids based on deionized water, isopropanol alcohol and dimethyl sulfoxide (DMSO) were used with different grain size dispersion: 150, 400 and 35 nm, respectively. The influence of growth time was also taken into consideration and bias enhanced nucleation....
-
Direct amination of boron-doped diamond by plasma polymerized allylamine film
PublicationA novel microwave pulsed-plasma based method for the modification of the hydrogen-terminated polycrystalline boron-doped diamond (BDD) with a thin film of polymerized allylamine (PPAAm) is reported. A modified BDD surface is resistant to hydrolysis and delamination and is characterized by a high density of positively charged amino groups. Pulsed microwave plasma was applied to improve the degree of cross-linking and bonding of...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
Long-working-distance Raman system for monitoring of uPA ECR CVD process of thin diamond/DLC layers growth
PublicationW artykule przedstawiono konstrucję systemu optoelektronicznego do monitoringu ramanowskiego in-situ procesu μPA ECR CVD (ang.: Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition), stosowanego do osadzania cienkich warstw diamentowych i diamentopodobnych DLC. System ma budowę modułową i wyposażony jest w dedykowane sondy optyczne. Przedstawiono wyniki pomiarów testowych, potwierdzjące, że system posiada...
-
Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes
PublicationIn recent years, ionic liquids and deep eutectic mixtures have demonstrated great potential in extraction processes relevant to several scientific and technological activities. This review focuses on the applicability of these sustainable solvents in a variety of extraction techniques, including but not limited to liquid- and solid-phase (micro) extraction, microwave-assisted extraction, ultrasound-assisted extraction and pressurized...
-
Optical properties of boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry
PublicationThe optical properties of boron-doped nanocrystalline diamond films, coated using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system, were analyzed by spectroscopic ellipsometry. Diamond films were deposited on silicon substrates. The ellipsometry data (refractive index (n(λ)), extinction coefficient (k(λ)) were modeled using dedicated software. Evolution of the optical structure with boron doping was observed...
-
An Improvement of Global Complex Roots and Poles Finding Algorithm for Propagation and Radiation Problems
PublicationAn improvement of the recently developed global roots finding algorithm has been proposed. The modification allows to shorten the computational time by reducing the number of function calls. Moreover, both versions of the algorithms (standard and modified) have been tested for numerically defined functions obtained from spectral domain approach and field matching method. The tests have been performed for three simple microwave...
-
Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network
PublicationThe electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...
-
Pin-on-Substrate Gap Waveguide: An Extremely Low-Cost Realization of High-Performance Gap Waveguide Components
PublicationConsidering the limitations of currently available technologies for the realization of microwave components and antennas, a trade-off between different factors including the efficiency and fabrication cost is required. The main objective of this letter is to propose a novel method for the realization of gap waveguides (GWGs) that take advantage of conventional PCB fabrication technology, thus are low cost and light weight. Moreover,...
-
Operational Enhancement of Numerical Weather Prediction with Data from Real-time Satellite Images
PublicationNumerical weather prediction (NWP) is a rapidly expanding field of science, which is related to meteorology, remote sensing and computer science. Authors present methods of enhancing WRF EMS (Weather Research and Forecast Environmental Modeling System) weather prediction system using data from satellites equipped with AMSU sensor (Advanced Microwave Sounding Unit). The data is acquired with Department of Geoinformatics’ ground...
-
Al-DIAMOND SCHOTTKY TUNNEL DIODES WITH BARRIER HEIGHT CONTROL
PublicationFew-nanometer-thick very highly boron-doped p-type layers were fabricated at metal-semiconductor interfaces of Schottky barrier diodes formed with aluminum on polycrystalline diamond. Preliminary results show that hermionically-assisted tunneling mechanism results in lower voltage drops at forward biasing of these diodes than expected for the Al-diamond metal-semiconductor potential barrier B. The effective barrier height Bpeff...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublicationModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
Design of novel highly sensitive sensors for crack detection in metal surfaces: theoretical foundation and experimental validation
PublicationThe application of different types of microwave resonators for sensing cracks in metallic structures has been subject of many studies. While most studies have been focused on improving the sensitivity of planar crack sensors, the theoretical foundation of the topic has not been treated in much detail. The major objective of this study is to perform an exhaustive study of the principles and theoretical foundations for crack sensing...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublicationContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
Optoelectronic system for investigation of cvd diamond/DLC layers growth
PublicationDevelopment of the optoelectronic system for non-invasive monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during μPA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The system uses multi-point Optical Emission Spectroscopy (OES) and long-working-distance Raman spectroscopy. Dissociation of H2 molecules, excitation and ionization of hydrogen atoms...
-
Nitrogen-doped diamond thin films: potential application in Fabry-Pérot interferometer
PublicationIn this paper we present results of preliminary research of using nitrogen-doped diamond (NDD) films as reflective layer in Fabry-Pérot interferometer. NDD films were deposited on Si substrates by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) with the use of CH4, H2 and N2 gas mixtures. During deposition process methane flow rate varied while nitrogen flow was constant. We performed series of measurements which showed...
-
Local mesh morphing technique for parametrized macromodels in the finite element method
PublicationThis paper presents a novel approach for enhancing the efficiency of the design process of microwave devices by means of the finite element method. It combines mesh morphing with local model order reduction (MOR) and yields parametrized macromodels that can be used to significantly reduce the number of variables in the FEM system of equations and acceleration of computer simulation. A projection basis for local reduction is generated...
-
Salicylaldimine-based receptor as a material for iron(III) selective optical sensing
Publicationα,α-Bis(salicylimino)-m-xylene (L) was prepared using both conventional and microwave-assisted procedure. The compound exhibits ability to colorimetric recognition of iron(III) ions in aqueous environment, what is shown by significant color change from yellow to purple. In DMSO : water (9:1 v/v) solvent system receptor creates with iron(III) cations complexes of 2:1 stoichiometry (L:Fe3+) with stability constant (log K) 7.54±0.21....
-
Influence of dopants on structure of polycrystalline bismuth niobate
PublicationBismuth niobate (BiNbO4) has attracted attention as a low-fired ceramics with promising microwave application potential. BiNbO4 ceramics was fabricated by mixed oxide method and sintered at temperature T<1000˚C. As the sintering aids a small amount of CuO oxide was used. The crystalline structure of the ceramic samples was examined by X-ray diffraction method at room temperature. The Rietveld refinement method was used for analysis...
-
Assessing the industrialization progress of hydrodynamic cavitation process intensification technology: a review
PublicationHydrodynamic cavitation (HC) is widely acknowledged as a promising green approach for enhancing various production and waste management processes, such as water treatment, sludge pretreatment, lignocellulosic biomass (LCB) pretreatment, emulsification, and food processing. Despite demonstrating superior industrialization potential compared with other emerging technologies such as ultrasound and microwave, the widespread commercial...
-
Review of Recent Advancement on Nature/Bio-inspired Antenna Designs
PublicationThis article presents an extensive examination of antennas rooted in nature and biology, showcasing their remarkable performance across a wide spectrum of frequencies—from microwave to terahertz. The limitations of traditional antenna design have become increasingly evident in the face of burgeoning demands for novel communication technologies. Conventional analytical-equation-based approaches struggle to deliver the combined performance...
-
ZnO-decorated green-synthesized multi-doped carbon dots from Chlorella pyrenoidosa for sustainable photocatalytic carbamazepine degradation
PublicationThe promising green synthesis of carbon dots (CDs) from microalga Chlorella pyrenoidosa was achieved using simple hydrothermal and microwave-assisted methods. Doping of nanomaterials by nonmetals (N, S, and P) was confirmed by X-ray photoelectron spectroscopy (XPS), while the existence of metals in the CDs was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM),...
-
Designing a High-sensitivity Microscale Triple-band Biosensor based on Terahertz MTMs to provide a perfect absorber for Non-Melanoma Skin Cancer diagnostic
PublicationNon-melanoma skin cancer (NMSC) is among the most prevalent forms of cancer originating in the top layer of the skin, with basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) being its primary categories. While both types are highly treatable, the success of treatment hinges on early diagnosis. Early-stage NMSC detection can be achieved through clinical examination, typically involving visual inspection. An alternative,...
-
Estimation of Broadband Complex Permeability Using SIW Cavity-Based Multimodal Approach
PublicationIn this article, an attractive multimodal substrate integrated waveguide (SIW) based methodology is presented for the characterization of magnetic materials in the broadband microwave frequency. The proposed approach employs a modified feed under-coupled SIW cavity instead of conventional feed over-coupled multiple SIW cavities; it uses the modified closedform expression, developed from the first principle to consider the effect...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
Developments in Green Chromatography
PublicationGreen analytical chemistry is a widely recognized concept that has led to the development of new analytical methods with reduced environmental impact and minimized analyst occupational exposure. Achievements include the development of microextraction, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE) techniques. Research towards greener separation processes focuses on the elimination of toxic solvents...
-
Nitrogen-Doped Diamond Film for Optical Investigation of Hemoglobin Concentration
PublicationIn this work we present the fabrication and characterization of a diamond film which can be utilized in the construction of optical sensors for the investigation of biological samples. We produced a nitrogen-doped diamond (NDD) film using a microwave plasma enhanced chemical vapor deposition (MWPECVD) system. The NDD film was investigated with the use of scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Doped Nanocrystalline Diamond Films as Reflective Layers for Fiber-Optic Sensors of Refractive Index of Liquids
PublicationThis paper reports the application of doped nanocrystalline diamond (NCD) films—nitrogen-doped NCD and boron-doped NCD—as reflective surfaces in an interferometric sensor of refractive index dedicated to the measurements of liquids. The sensor is constructed as a Fabry–Pérot interferometer, working in the reflective mode. The diamond films were deposited on silicon substrates by a microwave plasma enhanced chemical vapor deposition...
-
Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
PublicationFinesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry–Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline...
-
Performance-Driven Surrogate Modeling of High-Frequency Structures
PublicationThe development of modern high-frequency structures, including microwave and antenna components, heavily relies on full-wave electromagnetic (EM) simulation models. Notwithstanding, EM-driven design entails considerable computational expenses. This is especially troublesome when solving tasks that require massive EM analyzes, parametric optimization and uncertainty quantification be-ing representative examples. The employment of...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Integrated controller for ultra high frequency technique laboratory
PublicationDepartment of Microwave and Antenna Engineering decided to modernize the laboratory of Ultra High Frequency Techniques. The main change was to replace measurement of the field distribution inside rectangular waveguides by analysing the fields around striplines. This involved the need to overcome several technical and conceptual problems. Precise positioning of the probe and reading the field distribution near the stripline is important...
-
Rapid surrogate-assisted statistical analysis of compact microstrip couplers
PublicationIn this paper, a technique for low-cost statistical analysis and yield estimation of compact microwave couplers has been presented. The analysis is executed at the level of a fast surrogate model representing selected characteristic points of the coupler response that are critical to determine satisfaction/violation of the prescribed design specifications. Because of less nonlinear dependence of the characteristic points on geometry...
-
Charge-based deep level transient spectroscopy of B-doped and undoped polycrystalline diamond films
PublicationThe undoped and B-doped polycrystalline diamond thin film was synthesized by hot filament chemical vapor deposition and microwave plasma, respectively. The structural characterization was performed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrical properties of synthesized diamond layer were characterized by dc-conductivity method and charge deep level transient spectroscopy. The B-doped...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties
PublicationAromatic diamides, derivative of 2,6-pyridinedicarboxylic acid and isophthalic acid, bearing 1,3,4-thiadiazole residue were prepared with satisfactory yields in conventional procedures and microwave stimulated reactions. X-ray structure of N,N-bis (1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (2) DMSO solvate (2DMSO) was described. Selective zinc(II), lanthanum(III), terbium(III) and L-tyrosine recognition was found for N,N-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide...
-
A novel microstrip dual-layer rat-race coupler with compact size and enhanced bandwidth
PublicationMicrowave hybrid couplers are crucial components of mixers, phase shifters, amplifiers and other high-frequency systems. Conventional couplers are characterized by large size which limits their usefulness in modern applications. In this work, a novel compact rat-race coupler with enhanced bandwidth has been proposed. The structure consists of six compact microstrip resonant cells. It is implemented on two separate layers which permits...
-
Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity
PublicationIn this study, we exploit the anti-oxidative potential of four carnivorous plants to produce uniform and biologically active silver nanoparticles. The use of polyvinylpyrrolidone promoted syn-thesis of quasi-spherical nanoparticles characterized by stability and high uniformity. Their activity was tested against three human pathogens and three species of plant pathogenic bacteria. The study demonstrates the influence of synthesis...
-
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
PublicationA boron-doped diamond (BDD) sensor was proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Thin boron doped diamond active sensor layer was deposited on Si wafer and glassy carbon substrate by Microwave Plasma Enhanced Chemical Vapor Deposition (MW PE CVD). The structure of BDD was confirmed by Raman spectra analysis. Broad Raman bands centered at 482 cm-1 and 1219 cm-1 are typical...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Inverse surrogate models for fast geometry scaling of miniaturized dual-band couplers
PublicationRe-design of microwave structures for various sets of performance specifications is a challenging task, particularly for compact components where considerable electromagnetic (EM) cross-couplings make the relationships between geometry parameters and the structure responses complex. Here, we address geometry scaling of miniaturized dual-band couplers by means of inverse surrogate modeling. Our approach allows for fast estimation...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...