Filters
total: 633
filtered: 559
Chosen catalog filters
Search results for: ELECTROCHEMICAL REDUCTION
-
The origin of luminescence accompanying electrochemical reduction or chemical decomposition of peroxydisulfates
Publication -
Sub‐Nanometer‐Scale Cu9S5 Enables Efficiently Electrochemical Nitrate Reduction to Ammonia
PublicationThe sub-nanometer is a key feature size in materials science. Unlike single-atom and nanomaterials, size effects and inter-component cooperative actions in sub-nanomaterials will effective on its performance is more significant. Here, 0.95 nm ordered arrangement Cu9S5 sub-nanowires (Cu9S5 SNWs) are synthesized through the co-assembly effect of inorganic nuclei (Cu9S5) and clusters (phosphotungstic acid-PTA), achieving a significant...
-
Studies on Aminoanthraquinone-Modified Glassy Carbon Electrode: Synthesis and Electrochemical Performance toward Oxygen Reduction
PublicationIn this paper, 9,10-anthraquinone (AQ) derivative-modified glassy carbon (GC) electrodes were studied towards the electrochemical reduction of oxygen in aqueous and non-aqueous solutions. The reaction of 1-chloro-9,10-anthraquinone with aliphatic diamines was applied for the synthesis of amino-9,10-anthraquinone derivatives. The obtained AQ derivatives were grafted onto the surface of glassy carbon electrodes by electropolymerisation...
-
Studies on Aminoanthraquinone-Modified Glassy Carbon Electrode: Synthesis and Electrochemical Performance toward Oxygen Reduction
PublicationIn this paper, 9,10-anthraquinone (AQ) derivative-modified glassy carbon (GC) electrodes werestudied towards the electrochemical reduction of oxygen in aqueous and non-aqueous solutions. The reaction of 1-chloro-9,10-anthraquinone with aliphatic diamines was applied for the synthesis of amino-9,10-anthraquinone derivatives. The obtained AQ derivatives were grafted onto the surface of glassy carbon electrodes by electropolymerisation...
-
Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053
PublicationElectrochemistry (EC) coupled with analysis techniques such as liquid chromatography (LC) and mass spectrometry (MS) has been developed as a powerful tool for drug metabolism simulation. The application of EC in metabolic studies is particularly favourable due to the low matrix contribution compared to in vitro or in vivo biological models. In this paper, the EC(/LC)/MS system was applied to simulate phase I metabolism of the representative...
-
Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction
PublicationTiO2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles...
-
2D MXene nanocomposites: electrochemical and biomedical applications
PublicationIn recent years, key questions about the interaction of 2D MXene nanomaterials in electrochemical and biomedical applications have been raised. Most research has focused on clarifying the exclusive properties of the materials; however, only limited reports have described the biomedical applications of 2D nanomaterials. 2D MXenes are monolayer atomic nanosheets resulting from MAX phase ceramics. The hydrophilic properties, metallic...
-
Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance
PublicationThis study presents the preparation and characterization of few-layer black phosphorus (FLBP) chitosan electrodes by controlled electrochemical deposition of chitosan nanoparticles on FLBP-modified glassy carbon electrodes. FLBP was prepared by solvent-assisted exfoliation of bulk BP and was further modified with chitosan forming together a nanocomposite, including easy cross-linking with nanomaterials and film-forming properties....
-
A Three-Step Approach to Estimation of Reduction Potentials of Natural Mixtures of Antioxidants Based on DPPH Test; Illustration for Catechins and Cocoa
PublicationThe aim of this study is to propose a methodology to assess electrochemical properties of complex mixtures of antioxidants, such as plant extracts, based on the results of simple and popular DPPH test. The first, most difficult step, involves determinations of standard reduction potentials (E0) for the series of purified compounds (here catechins). The next step is the calculation of stoichiometric values (n10) based on the results...
-
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS
PublicationA sensor working in multiple domains may offer enhanced information about the properties of an investigated analyte, including those containing biological species. It has already been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains, can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin film. The spectral response of the LMR sensors depends on the refractive...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
-
Enhanced electrochemical kinetics of highly-oriented (111)-textured boron-doped diamond electrodes induced by deuterium plasma chemistry
PublicationNovel highly-oriented (111)-textured boron-doped diamond electrodes (BDDD) featuring high electrochemical activity and electrode stability toward electrochemical analytics were fabricated by deuterium-rich microwave plasma CVD. The high flux deuterium plasma-induced preferential formation of (111)-faceted diamond as revealed by XRD. The highly-oriented diamond surface exhibited improved boron dopant incorporation and activation,...
-
Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes
PublicationThe sequential order of photoinduced charge transfer processes and accompanying structure changes were analyzed by UV-vis and resonance-Raman spectroscopy of intermediates of a Ru(II) based photocatalytic hydrogen evolving system obtained by electrochemical reduction.
-
Electroactive polymer/graphene oxide nanostructured composites; evidence for direct chemical interactions between PEDOT and GOx
PublicationThis work concerns electrochemical synthesis of nanocomposites consisting of conducting polymer and reduced graphene oxide (rGOx) as electrode materials for supercapacitors. The electrosynthesis was performed in an aqueous solution of the 3,4-ethylenedioxytiophene (EDOT) monomer and graphene oxide (GOx) without supporting electrolyte. The amount of GOx was optimized to obtain the best electrochemical performance of the nanocomposite...
-
Carbon Nanomaterials From Metal-Organic Frameworks: A New Material Horizon for CO2 Reduction
PublicationThe rise of CO2 in the atmosphere, which results in severe climate change and temperature increase, is known as the major reason for greenhouse effect. Reducing CO2 to value-added products is an attractive solution to this severe problem, along with addressing the energy crisis, to which the catalysts being employed are of vital importance. Due to their high porosity and tunable compositions, Metal-Organic Frameworks (MOFs) show...
-
Determination of Antioxidant Activity of Vitamin C by Voltammetric Methods
PublicationVoltammetric methods—cyclic (CV) and differential pulse voltammetry (DPV) are considered the most appropriate way to evaluate antioxidant activity of redox active compounds. They provide information about both mechanism and kinetics of electrochemical oxidation of antioxidants as well as their physical and chemical properties such as the redox potential or the number of electrons transferred. These methods are helpful for understanding...
-
Powering the Future by Iron Sulfide Type Material (FexSy) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review
PublicationWater electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one...
-
Tuning of the Electrochemical Properties of Transparent Fluorine-doped Tin Oxide Electrodes by Microwave Pulsed-plasma Polymerized Allylamine
PublicationWe report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine...
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublicationIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
pH -Tunable equilibria in azocrown ethers with histidine moieties, Bioelectrochemistry
PublicationThe crown ethers with electro- and photoactive azo moieties containing substituents with mobile protons such as in the –COOH groups of histidine, show unique effect of pH switched on/off presence of the azo form. The differences observed for the electrochemical behavior of azocrown ethers with N-acetylhistidine and imidazole moieties reveal the interference of a chemical reduction pathway in strongly acidified solutions. This...
-
In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer
PublicationIn this work, the Mach-Zehnder interferometer was designed to monitor the electrochemical processes conducted at boron-doped diamond electrode surface. The diamond electrodes were synthesized via Microwave Plasma-Assisted Chemical Vapor Deposition on optical grade quartz glass. The achieved transmittance in working are of diamond electrodes reached 55 %. A cage system-based Mach-Zehnder interferometer was used which allowed the...
-
Impact of strontium non-stoichiometry of SrxTi0.3Fe0.7O3-δ on structural, electrical, and electrochemical properties for potential oxygen electrode of intermediate temperature solid oxide cells
PublicationThis work presents the results of a comprehensive study on the impact of the A-site non-stoichiometry of SrxTi0.3Fe0.7O3-δ (x = 0.90, 0.95, 1.00, 1.05) ceramics on their physicochemical properties. The materials were fabricated by the conventional solid-state reaction method and their structure was determined by X-ray diffractometry, X-ray photoelectron spectroscopy and electron microscopy. Their sintering and thermal expansion...
-
Aqueous Molybdate Provides Effective Corrosion Inhibition of WE43 Magnesium Alloy in Sodium Chloride Solutions
PublicationCorrosion and corrosion inhibition of WE43 magnesium alloy were investigated in NaCl solutions containing different amounts of sodium molybdate. Electrochemical, microscopic, and spectroscopic experiments were utilized to examine the mechanism of corrosion inhibition by molybdates. Electrochemical data showed that Na2MoO4 inhibitor provides reliable inhibition at concentrations at and above 100 mM. Raman and XPS spectroscopy demonstrated...
-
Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites
PublicationIn this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite....
-
Fe local structure in Pt-free nitrogen-modified carbon based electrocatalysts: XAFS study
PublicationThe paper presents a new results on the bonding environment (coordination number and geometry) and on oxidation states of Fe in nitrogen-modified Fe/C composites used as Pt-free catalysts for oxygen reduction in Direct Hydrogen Fuel Cells. Starting from glucose or fructose, two catalysts displaying different electrochemical performance were prepared and studied in the form of pristine powder and thin catalytic layer of electrode...
-
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublicationA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)- reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. In order to obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at constant potential of −0.85 V. The GO, RGO...
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Redox State Sensitive Spectroscopy of the Model Compound [(H-dcbpy)(2)Ru-II(NCS)(2)](2-) (dcbpy=2,2 '-Bipyridine-4,4 '-dicarboxylato)
PublicationThe charge transfer reaction mechanism in a ruthenium polypyridine model complex with isothiocyanato ligands, i.e., [(H-dcbpy)(2)Ru(NCS)(2)](2-) 2Bu(4)N(+) (Ru2H) (dcbpy = 2,2'-bipyridine-4,4'-dicarboxylato), has been investigated by combining UV-vis absorption, resonance Raman spectroscopy, and electrochemical methods. Understanding the photophysics of light-harvesting complexes of this class is an indispensable prerequisite to...
-
Three modes of electrochemical impedance spectroscopy measurements performed on vanadium redox flow battery
PublicationThis article presents an innovative approach to monitor working redox flow batteries using dynamic electrochemical impedance spectroscopy, diverging from the commonly sequential impedance methods carried out under potentiostatic or galvanostatic conditions close to the open circle voltage. The authors introduce a fresh variation of dynamic impedance measurement that leverages an amplitude-modulated multi-frequency alternating current...
-
In-situ odd random phase electrochemical impedance spectroscopy study on the electropolymerization of pyrrole on iron in the presence of sodium salicylate – The influence of the monomer concentration
PublicationIn this work, the potentiostatic electropolymerization of polypyrrole (PPy) on iron in aqueous solution of sodium salicylate and pyrrole is studied in situ by odd random phase electrochemical impedance spectroscopy (ORP-EIS). The influence of the pyrrole concentration on the electrosynthesis process is investigated. The ORP-EIS technique ensures a reliable analysis of the PPy electrosynthesis on iron by means of an advanced data...
-
Enhanced photoelectrochemical and photocatalytic performance of iodine-doped titania nanotube arrays
PublicationThe paper discusses the synthesis and performance of iodine doped titania nanotube arrays exhibited under irradiation. The doping procedure was performed as an additional, electrochemical process carried out after formation of nanotube arrays via anodization of Ti substrate. The optical and structural properties were characterized using Raman, UV-vis, photoluminescence and X-ray photoelectron spectroscopy. The surface morphology...
-
Development of iron doped strontium titanates as oxygen electrode for solid oxide fuel cells
PublicationProducing efficient solid oxide fuel cells (SOFC) without the use of harmful elements is one of the current challenges. Increasing the safety of people and reducing production costs is possible, among others, thanks to the use of iron doped strontium titanates as porous oxygen electrodes. In this thesis, the results of research on iron doped strontium titanates as potential oxygen electrodes for SOFC are presented. The research...
-
Enhanced electrochemical performance of partially amorphous La0.6Sr0.4CoO3-δ oxygen electrode materials for low-temperature solid oxide cells operating at 400 °C
PublicationThis work evaluates partially amorphous La0.6Sr0.4CoO3-δ (LSC) as a potential oxygen electrode for lowtemperature solid oxide cells. LSC was deposited using the spin-coating technique onto Ce0.8Gd0.2O2-δ (CGO) substrates. The optimal oxygen electrode thickness was determined as 500 nm. The electrochemical impedance spectroscopy (EIS) study showed a significant improvement in oxygen reduction/oxidation reaction kinetics when annealing...
-
Electrochemistry from first-principles in the grand canonical ensemble
PublicationProgress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are...
-
Hydrogen evolution reaction catalyzed by Co-based metal-organic frameworks and their derivatives
PublicationIn this study, Co-bearing Metal-Organic Frameworks (MOFs) are grown via a facile solvothermal process on the surface of two kinds of conductive substrates – titanium dioxide nanotubes (TiO2NT) and fluorine-doped tin oxide (FTO) glass and tested as electrodes in the electrochemical hydrogen evolution reaction (HER). The materials derived from three organic linkers - terephthalic acid (Co-BDC), 2-aminoterephthalic acid (Co-BDCNH2),...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond
Publication.A boron-doped diamond (BDD) sensor is proposed for effective detection of chemical oxygen demand (COD) by means of amperometric technique. Boron-doped diamond thin films, acting as active sensors, were deposited on both silicon wafer and glassy carbon (GC) substrates by microwave plasma assisted chemical vapour deposition. SEM micrographs showed that BDD–Si displays triangle-faceted crystallites ca. 0.5–3 μm in size, while BDD–GC...
-
High catalytic performance of laccase wired to naphthylated multiwall carbon nanotubes
PublicationThe direct electrical connection of laccase on the electrode surface is a key feature in the design of efficient and stable biocathodes. However, laccases can perform a direct electron transfer only when they are in the preferable orientation toward the electrode. Here we report the investigation of the orientation of Laccase from Amano on multi-walled carbon nanotube surface modified with naphthalene group. Naphthylated multi...
-
Sinusoidal Alternating-Current Voltammetry and Metrological Properties of a Flat Voltammetric Electrode in the Time Domain
PublicationIn this paper there were analyzed metrological properties of a flat electrode used to mark ions with the method of sinusoidal alternating-current voltammetry in the situation where on its surface an electrochemical reversible reaction of oxidizing / reduction takes place. The result of the analysis conducted is that such a voltammetric electrode functions like a converter type I. Metrological properties of such an electrode in...
-
Surface and Corrosion Properties of AA6063-T5 Aluminium Alloy in Molybdate-containing Sodium Chloride Solutions
PublicationCorrosion properties of aluminium alloy AA6063-T5 were investigated in molybdate-containing NaCl solutions. Electrochemical, microscopic, and spectroscopic experiments were utilized to examine the mechanism of corrosion inhibition by molybdates. SEM-EDX, magnetic force, and intermodulation electrostatic force microscopy data suggested that the inhibition initiation preferentially occurred over Fe-rich cathodic IMPs. Spectroscopic...
-
Structural and electrical properties of Cr-doped SrTiO 3 porous materials
PublicationSeries of single-phase materials with assumed formula SrTi1−xCrxO3 (where x = 0, 1, 4, 6 mol.%) were obtained by sol-gel method. The structure and microstructure of materials were characterised by X-ray diffraction and scanning electron microscopy methods. Moreover, the study of electrical properties and evaluation of chemical stability in CO2/H2O atmosphere was performed by electrochemical impedance spectroscopy and thermogravimery...
-
Nanocrystalline cathode functional layer for SOFC
PublicationRecently, it was shown that thin functional layers introduced between an electrolyte and cathode might improve cathode performance. However, the mechanism of this improvement still needs analysis. In this paper, a thin (∼140 nm), spin-coated perovskite layer (La0.6Sr0.4Co0.2Fe0.8O3-δ) was placed between a cathode (La0.6Sr0.4Co0.2Fe0.8O3-δ) and an electrolyte (Ce0.8Gd0.2O2-δ) and the effects of this investigated. The microstructure...
-
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublicationA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)-reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. To obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at a constant potential of −0.85 V. The GO, RGO and PEDOT-RGO...
-
High-Temperature Structural and Electrical Properties of BaLnCo2O6 Positrodes
PublicationThe application of double perovskite cobaltites BaLnCo2O6−δ (Ln = lanthanide element) in electrochemical devices for energy conversion requires control of their properties at operating conditions. This work presents a study of a series of BaLnCo2O6−δ (Ln = La, Pr, Nd) with a focus on the evolution of structural and electrical properties with temperature. Symmetry, oxygen non-stoichiometry, and cobalt valence state have been examined...
-
Laser patterned platform with PEDOT–graphene composite film for NO2 sensing
PublicationThis work presents a simple and fully electrochemical route used for fabricating of a NO2 gas sensor made of reduced-graphene-oxide-poly(3,4-ethylenedioxythiophene) composite film. The sensing platform was fabricated from alumina substrate and equipped with gold interdigitated electrodes and built-in heater.The temperature distribution on the surface of interdigitated electrodes was investigated by a thermalimaging camera and compared...
-
Preparation and Characterization of Nanomaterial Consisting of Silica Aerogel & Carbon Tested as an Electrode in Non-Aqueous Media Containing Lithium Salt.
PublicationSilica aerogel (SiO2ag) was combined with carbonaceous material in the pyrolysis process of hydrocarbons. The obtained nanocomposite SiO2ag/C was amorphous, partially preserving the porous structure of SiO2ag. The specific surface area changes from 445.6 m2/g for pure SiO2ag to 205.52 m2/g SiO2ag/C. The 29Si MAS-NMR shows a three-dimensional matrix with silicon atoms connected to other silicon atoms by four...
-
Performance of microbial fuel cells operated under anoxic conditions
PublicationNowadays, microbial fuel cells (MFC) stand up as a promising renewable energy source. Due to the ability of the MFC to oxidize a wide spectrum of substrates, wastewater seems to be one of the most interesting fuels. Unfortunately, wastewater could contain electron acceptors such as nitrate, which could interfere with the electrical performance of the MFC. In this work, the influence of oxidised nitrogen forms on the electricity...
-
Influence of iron content on water uptake and charge transport in BaCe0.6Zr0.2Y0.2−xFexO3−δ triple-conducting oxides
PublicationIn this work, we studied the BaCe0.6Zr0.2Y0.2−xFexO3−δ system which belongs to the triple-conducting oxides (TCOs) group. The electrochemical properties of BaCe0.6Zr0.2Y0.2−xFexO3−δ were investigated using electrochemical impedance spectroscopy (EIS) and the water uptake was analyzed using thermogravimetry (TG). All investigated materials exhibited water uptake, with proton concentration increasing with decreasing iron content....
-
Direct determination of paraquat herbicide by square-wave voltammetry by two-step transfer mechanism at heterogeneous boron-doped carbon nanowall electrodes
PublicationBoron-doped carbon nanowalls (B:CNW) versus boron-doped diamond (BDD) materials were investigated for the effective electrochemical detection of highly toxic herbicide paraquat (PQ). Depending on the surface morphology and functional groups of BDD and B:CNWs, the electrochemical absorption and detection of the target analyte PQ revealed different detection mechanisms. The surface absorption mechanism was mainly observed for BDD,...
-
Photoinduced K+ Intercalation into MoO3/FTO Photoanode—the Impact on the Photoelectrochemical Performance
PublicationIn this work, thin layers of MoO3 were tested as potential photoanodes for water splitting. The influence of photointercalation of alkali metal cation (K+) into the MoO3 structure on the photoelectrochemical properties of the molybdenum trioxide films was investigated for the first time. MoO3 thin films were synthesized via thermal annealing of thin, metallic Mo films deposited onto the FTO substrate using a magnetron sputtering...