Search results for: ARTIFICIAL NEURAL NETWORKS (ANNS)
-
MobileNet family tailored for Raspberry Pi
PublicationWith the advances in systems-on-a-chip technologies, there is a growing demand to deploy intelligent vision systems on low-cost microcomputers. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity of contemporary convolutional neural networks (CNNs). The state-of-the-art lightweight CNN is MobileNetV3. However, it was designed to achieve a good trade-off between...
-
How to Sort Them? A Network for LEGO Bricks Classification
PublicationLEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 3 V
Open Research DataThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 1 V
Open Research DataThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
The conducted immunity test of a power supply unit in the frequency range from 19 MHz to 26 MHz for the RF voltage level of 10 V
Open Research DataThe dataset presents a result of measurements that are a part of immunity tests to conducted disturbances, induced by radio-frequency fields. The immunity tests were carried out on the mains cable of the DF1723003TC NDN power supply unit. Tests of immunity of electronic systems to conducted disturbances in the frequency range from 19 MHz to 26 MHz were...
-
Society 4.0: Issues, Challenges, Approaches, and Enabling Technologies
PublicationThis guest edition of Cybernetics and Systems is a broadening continuation of our last year edition titled “Intelligence Augmentation and Amplification: Approaches, Tools, and Case Studies”. This time we cover research perspective extending towards what is known as Society 4.0. Bob de Vit brought the concept of Society 4.0 to life in his book “Society 4.0 – resolving eight key issues to build a citizens society”. From the Systems...
-
Automatic Emotion Recognition in Children with Autism: A Systematic Literature Review
PublicationThe automatic emotion recognition domain brings new methods and technologies that might be used to enhance therapy of children with autism. The paper aims at the exploration of methods and tools used to recognize emotions in children. It presents a literature review study that was performed using a systematic approach and PRISMA methodology for reporting quantitative and qualitative results. Diverse observation channels and modalities...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublicationPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Performance Analysis of the OpenCL Environment on Mobile Platforms
PublicationToday’s smartphones have more and more features that so far were only assigned to personal computers. Every year these devices are composed of better and more efficient components. Everything indicates that modern smartphones are replacing ordinary computers in various activities. High computing power is required for tasks such as image processing, speech recognition and object detection. This paper analyses the performance of...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
The Influence of Selecting Regions from Endoscopic Video Frames on The Efficiency of Large Bowel Disease Recognition Algorithms
PublicationThe article presents our research in the field of the automatic diagnosis of large intestine diseases on endoscopic video. It focuses on the methods of selecting regions of interest from endoscopic video frames for further analysis by specialized disease recognition algorithms. Four methods of selecting regions of interest have been discussed: a. trivial, b. with the deletion of characteristic, endoscope specific additions to the...
-
Online sound restoration system for digital library applications
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Computed aided system for separation and classification of the abnormal erythrocytes in human blood
PublicationThe human peripheral blood consists of cells (red cells, white cells, and platelets) suspended in plasma. In the following research the team assessed an influence of nanodiamond particles on blood elements over various periods of time. The material used in the study consisted of samples taken from ten healthy humans of various age, different blood types and both sexes. The markings were leaded by adding to the blood unmodified...
-
Utilising AI Models to Analyse the Relationship between Battlefield Developments in the Russian-Ukrainian War and Fluctuations in Stock Market Values
PublicationThis study examines the impact of battlefield developments in the ongoing Russian–Ukrainian war, which to date has lasted over 1000 days, on the stock prices of defence corporations such as BAE Systems, Booz Allen Hamilton, Huntington Ingalls, and Rheinmetall AG. Stock prices were analysed alongside sentiment data extracted from news articles, and processed using machine learning models leveraging natural...
-
Synteza układu sterowania statkiem morskim dynamicznie pozycjonowanym w warunkach niepewności
PublicationNiniejsza monografia obejmuje zagadnienia związane z syntezą układu dynamicznego pozycjonowania statku w środowisku morskim z zastosowaniem wybranych nieliniowych metod sterowania. W ramach pracy autorka rozważała struktury sterowania z zastosowaniem wektorowej adaptacyjnej metody backstep oraz metod jej pokrewnych, takich jak regulatory MSS (ang. multiple surface sliding), DSC (ang. dynamic surface control), NB (ang. neural backstepping)....
-
Automatic Singing Voice Recognition EmployingNeural Networks and Rough Sets
PublicationCelem badań jest automatyczne rozpoznawanie głosów śpiewaczych w kategorii rodzaju i jakości technicznej śpiewu. W artykule opisano stworzoną bazę danych głosów, która zawiera próbki głosu śpiewaków profesjonalnych i amatorskich. W dalszej części opisano parametry zdefiniowane w oparciu o zjawiska biomechaniczne w narządzie głosu podczas śpiewania. W oparciu o stworzone macierze parametrów wytrenowano i porównano automatyczne klasyfikatory...
-
Preprocessing of Document Images Based on the GGD and GMM for Binarization of Degraded Ancient Papyri Images
PublicationThresholding of document images is one of the most relevant operations that influence the final results of their further analysis. Although many image binarization methods have been proposed during recent several years, starting from global thresholding, through local and adaptive methods, to more sophisticated multi-stage algorithms and the use of deep convolutional neural networks, proper thresholding of degraded historical...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine for the evaluation of its structure parameters
PublicationThe paper presents the possibility of using an analytical study of the engine exhaust ignition to evaluate the technical condition of the selected components. Software tools available for the analysis of experimental data commonly use multiple regression model that allows the study of the effects and iterations between model input quantities and one output variable. The use of multi-equation models gives a lot of freedom in the...
-
Investigating Feature Spaces for Isolated Word Recognition
PublicationMuch attention is given by researchers to the speech processing task in automatic speech recognition (ASR) over the past decades. The study addresses the issue related to the investigation of the appropriateness of a two-dimensional representation of speech feature spaces for speech recognition tasks based on deep learning techniques. The approach combines Convolutional Neural Networks (CNNs) and timefrequency signal representation...
-
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
PublicationThe solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen...
-
Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm
PublicationSatellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based On the Exhaust Gas Composition Testing
PublicationThis paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical state assessment of its charge exchange system under assumption that there is strong correlation between considered structure parameters and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous character of their changes. Concentration of the analyzed ZT may be hence considered...
-
A Case Study of Electric Vehicles Load Forecasting in Residential Sector Using Machine Learning Techniques
PublicationElectric vehicles (EVs) have been widely adopted to prevent global warming in recent years. The higher installation of Level-1 and Level-2 chargers in residential areas soon poses challenges to the distributed network. However, such challenges can be mitigated through the adoption of smart charging or controlled charging schemes. To facilitate the implementation of smart charging, accurate forecasting of EV charging demand in residential...
-
Detecting Lombard Speech Using Deep Learning Approach
PublicationRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublicationVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis
PublicationIn this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset...
-
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
PublicationIn environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublicationLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublicationPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublicationTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublicationDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublicationIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublicationFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
Survey on fuzzy logic methods in control systems of electromechanical plants
PublicationРассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...
-
Experimental and Theoretical Screening for Green Solvents Improving Sulfamethizole Solubility
PublicationSolubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial importance for drug development and processing. Extensive experimental screening is limited due to the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility of applying quantum-chemistry-derived...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Faults and Fault Detection Methods in Electric Drives
PublicationThe chapter presents a review of faults and fault detection methods in electric drives. Typical faults are presented that arises for the induction motor, which is valued in the industry for its robust construction and cost-effective production. Moreover, a summary is presented of detectable faults in conjunction with the required physical information that allow a detection of specific faults. In order to address faults of a complete...
-
Combined Single Neuron Unit Activity and Local Field Potential Oscillations in a Human Visual Recognition Memory Task
PublicationGOAL: Activities of neuronal networks range from action potential firing of individual neurons, coordinated oscillations of local neuronal assemblies, and distributed neural populations. Here, we describe recordings using hybrid electrodes, containing both micro- and clinical macroelectrodes, to simultaneously sample both large-scale network oscillations and single neuron spiking activity in the medial temporal lobe structures...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublicationIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool
PublicationGPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...