Search results for: dynamic electrochemical impedance spectroscopy
-
Simple synthesis route for fabrication of protective photo‐crosslinked poly(zwitterionic) membranes for application in non‐enzymatic glucose sensing
PublicationThis work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion,...
-
Comprehensive Evaluation of the Biological Properties of Surface-Modified Titanium Alloy Implants
PublicationAn increasing interest in the fabrication of implants made of titanium and its alloys results from their capacity to be integrated into the bone system. This integration is facilitated by different modifications of the implant surface. Here, we assessed the bioactivity of amorphous titania nanoporous and nanotubular coatings (TNTs), produced by electrochemical oxidation of Ti6Al4V orthopedic implants’ surface. The chemical composition...
-
Efficacious Alkaline Copper Corrosion Inhibition by a Mixed Ligand Copper(II) Complex of 2,2′-Bipyridine and Glycine: Electrochemical and Theoretical Studies
PublicationA mixed ligand copper(II) complex, namely, [Cu(BPy)(Gly)Cl]⋅2H2O (CuC) (BPy=2,2′-bipyridine and Gly=glycine), was synthesized and characterized. The synthesized CuC complex was tested as inhibitor to effectively mitigate the corrosion of copper in alkaline solutions using the linear sweep voltammetry (LSV) and linear polarization resistance (LPR) techniques. For the sake of comparison, such two D.C. electrochemical techniques were...
-
Visualization of the surface of the Nafion membrane
Open Research DataFuel cells use the chemical energy of hydrogen or other fuels to produce electricity. If the fuel is hydrogen, the only products are electricity, water and heat. Fuel cells are unique in the variety of their potential applications, they can use a wide variety of fuels. They are also highly scalable devices that can power both cars and mobile phones....
-
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance
PublicationWaste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’...
-
Effect of bio-based components on the chemical structure, thermal stability and mechanical properties of green thermoplastic polyurethane elastomers
PublicationIt seems to be obvious that conditions changes during polyols synthesis have impact on the polyols properties. Even the chemical formula is the same or similar, physicochemical properties and also molecular weight of polyols might be different and are significant in term of future polyurethanes properties and processing. In this work, fully bio-based poly(propylene succinate)s synthesized at different temperature conditions were...
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes
PublicationTitanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or lowcost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning...
-
Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling
PublicationIn this work polyurethane elastomers were synthesised by using different mixtures of a petrochemical and glycerolysate polyols and 4,4-diphenylmethane diisocyanate (MDI). Glycerolysate polyol was produced from polyurethane foam decomposition using crude glycerine as a decomposition agent. The structure and thermal properties of obtained semi-product were similar to the polyol used in the synthesis of original foam. Glycerolysate...
-
Photophysics of Untethered ZnTPP-Fullerene Complexes in Solution
PublicationThe spectroscopy and dynamic behavior of the self-assembled, Soret-excited zinc tetraphenylporphyrin (ZnTPP) plus fullerene (C60) model system in solution has been examined using steady state fluorescence quenching, nanosecond time-correlated single photon counting, picosecond fluorescence upconversion, and picosecond transient absorption methods. Evidence of ground state complexation is presented. Steady-state quenching of the...
-
Chemical Structure and Thermal Properties versus Accelerated Aging of Bio-Based Poly(ether-urethanes) with Modified Hard Segments
PublicationAging of polymers is a natural process that occurs during their usage and storage. Predicting the lifetime of polymers is a crucial aspect that should be considered at the design stage. In this paper, a series of bio-based thermoplastic poly(ether-urethane) elastomers (bio-TPUs) with modified hard segments were synthesized and investigated to understand the structural and property changes triggered by accelerated aging. The bio-TPUs...
-
Interaction of cisplatin and two potential antitumoral platinum(ii) complexes with a model lipid membrane: a combined NMR and MD study
PublicationIn this study, the interaction of cisplatin (1) and two potential antitumoral Pt(II) complexes (2 and 3) with a model DMPC bilayer was investigated by multinuclear NMR spectroscopy and MD simulations in order to understand its implication for the different antitumoral properties shown by the three complexes. In particular, 31P, 13C and 2H solid state NMR experiments were performed to obtain information on the phase structure, phase...
-
Physicochemical properties of La0.5Ba0.5Co1-xFexO3-δ (0≤x≤1) as positrode for proton ceramic electrochemical cells
PublicationWe report on essential properties of materials in the series La0.5Ba0.5Co1-xFexO3-δ as positrodes for proton ceramic electrochemical cells (PCECs). The unit cell and thermochemical expansion coefficient (TCEC) of these cubic perovskites decrease with iron content x, the TCEC of La0.5Ba0.5FeO3-δ going as low as 11·10-6 1/K. The materials behave as LaMO3 perovskites with small band gaps and Ba acting as acceptors compensated by electron...
-
Effect of alkyl sulfate on the phase behavior of microemulsions stabilized with monoacylglycerols
PublicationIn this study the effect of an anionic surfactant (sodium dodecyl sulfate SDS) and oils (hydrocarbons: C12-C16) on the formation and phase behavior of the systems of oil/monoacylglycerols (MAG):SDS/propylene glycol/water has been investigated. The effects of the surfactant mixture on the phase behavior and the concentrationof water or oil in the systems were studied at three temperatures (50, 55, 60 C). Electrical conductivity...
-
Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels
PublicationBiowaste chicken eggshell (ES) powder was applied as a potential cure modifier in epoxy/anhydride systems. Cure behaviour and kinetics of composites filled with very low content (0.1 wt% based on epoxy resin) of ES, calcium carbonate (CaCO3), and terpolymer-modified fillers, mES and mCaCO3, were discussed comparatively. Surface analysis was performed by X-ray photoelectron spectroscopy. Cure kinetics was investigated by differential...
-
Interrelationship between total volatile organic compounds emissions, structure and properties of natural rubber/polycaprolactone bio-blends cross-linked with peroxides
PublicationNatural rubber/polycaprolactone (NR/PCL) bio-based blends with different organic peroxides were prepared using an internal batch mixer and subsequently cross-linked at 170°C. Two types of commonly used organic peroxides, dicumyl peroxide and di(tert-butylperoxyisopropyl)benzene peroxide, were applied as free-radical initiator. Cross-linking efficiency of NR/PCL blends were investigated using oscillating disc rheometer measurements,...
-
Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol
PublicationThe paper describes the preparation and characterization of rigid polyurethane-polyisocyanurate (PUR-PIR) foams obtained with biopolyol synthesized in the process of liquefaction of biomass from the Baltic Sea. The obtained foams differed in the content of biopolyol in polyol mixture (0–30 wt%) and the isocyanate index (IISO = 200, 250, and 300). The prepared foams were characterized in terms of processing parameters (processing...
-
Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?
PublicationThin nanocomposite films of polyurethane have received remarkable attention due to their shape memory properties. As most of the reports focus on the beneficial aspects of the presence of nanofillers such as graphene nanoplatelets (GNPs) introduced into shape memory polymers, some research results reveal the opposite trend. The polyether/polyester-based polyurethane was synthesized through a condensation polymerization and the...
-
Corrosion Inhibition Mechanism and Efficiency Differentiation of Dihydroxybenzene Isomers Towards Aluminum Alloy 5754 in Alkaline Media
PublicationThe selection of efficient corrosion inhibitors requires detailed knowledge regarding the interaction mechanism, which depends on the type and amount of functional groups within the inhibitor molecule. The position of functional groups between different isomers is often overlooked, but is no less important, since factors like steric hinderance may significantly affect the adsorption mechanism. In this study, we have presented how...
-
Evaluating the impact of ZnO doping on electrical and thermal properties of calcium-aluminosilicate oxynitride glass-ceramics
PublicationThis study aimed to investigate the impact of ZnO content on the structure, thermal, and electrical properties of oxynitride glass-ceramic(s) within the Ca–Al–Si–O–N (CASON) system. The base glass had the composition of Ca7Al14Si17O52N7, with ZnO additions ranging from 3 to 15 % by weight. A pristine Ca7Al14Si17O52N7 glass was successfully prepared by melt-quenching technique followed by converted into glass-ceramic by incorporating various...
-
Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst
PublicationIn the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 – tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery...
-
A comparative study on selective properties of Kraft lignin–natural rubber composites containing different plasticizers
PublicationEffect of plasticizer type on the kraft lignin–nat- ural rubber composite microstructure and selected proper- ties was determined. The composites were prepared with addition of a commonly used naphthenic oil plasticizer to study the decomposition product of polyurethane (glyc- erolysate) and its characteristics. Kraft lignin powder was incorporated into the natural rubber matrix in amounts of 10 and 40 parts per 100 parts of natural...
-
The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations.
PublicationThis paper aims at the utilisation of glycerolysate (Gly) obtained in polyurethane recycling process by means of crude glycerine, which has in its structure hydroxyl end groups that allow for further processing. Polyurethanes (PUs) were synthesised using prepolymer method with the mixture of neat polyol and glycerolysate, in different ratios, with 4,4-diphenylmethane diisocyanate (MDI). The prepolymer was subsequently extended...
-
Investigations of Energy Conversion and Surface Effect for Laser-Illuminated Gold Nanorod Platforms
PublicationAchieving a quick temperature increase is a burning issue for biophysical applications, like germ inactivation and tumor ablation, and for energy performances, like solar collectors and steam generators. Based on the plasmon resonance phenomenon, noble metallic nanoparticles have emerged as promising weapons due to their very high biocompatibility, optical properties, and high surface-to-volume ratio, increasing energy conversion...
-
Oxygen concentration regulated the efficient liquefaction of vulcanized natural rubber
PublicationOxidative liquefaction represents a promising avenue for the homogeneous and high-value utilization of waste tire rubber. Given that truck tires predominantly comprise natural rubber (NR), this study investigated the efficient liquefaction of vulcanized NR regulated by oxygen concentration. Remarkably, the liquefaction of vulcanized NR was realized with an oxygen concentration of 75 % at 200 °C within 3 min. FTIR spectroscopy showed...
-
Foliate-Targeting Quantum Dots-β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells
PublicationTargeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound...
-
Investigation into the Effect of Spinel Pigments on the Photostability and Combustion Properties of Ethylene-Norbornene Copolymer
PublicationMulticolor ethylene-norbornene (EN) composites filled with three different spinel pigments (Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt mixing and characterized in terms of their stability under destructive environmental conditions. The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h, 600 h, or 900 h. The mechanical performance of the EN composites...
-
The influence of the Cu2O deposition method on the structure, morphology and photoresponse of the ordered TiO2NTs/Cu2O heterojunction
PublicationThe increased interest in highly ordered titania structures exhibiting tubular shape that could be directly formed onto the stable substrate is related with the intensive research on their modification enabling absorption of light within the wide solar spectrum and its further conversion into electric or chemical energy. Among others, formation of uniform 3D heterojunctions based on the TiO2 nanotubes attracts attention since porous...
-
Dielectric Spectroscopy Studies and Modelling of Piezoelectric Properties of Multiferroic Ceramics
PublicationCompounds and solid solutions of bismuth ferrite (BiFeO3)—barium titanate (BaTiO3) system are of great scientific and engineering interest as multiferroic and potential high-temperature lead-free piezoelectric materials. In the present paper, the results of research on the synthesis and characterisation of 0.67Bi1.02FeO3–0.33BaTiO3 (67BFBT) ceramics in terms of crystal structure and dielectric and piezoelectric properties are reported....
-
Effect of high loading of titanium dioxide particles on the morphology and selected properties of natural rubber-based composites
PublicationThe aim of this work was to prepare and characterize the natural rubber vulcanizates contained different amounts of titanium dioxide particles. At first rubber mixture was prepared using a laboratory two-roll mill and then samples were vulcanized in a hydraulic press. The formulation of rubber mixture and rubber-processing technique is based on our earlier investigations. Materials were obtained at the different titanium dioxide...
-
The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2
PublicationA series of microemulsion (ME) system, constituted by different water to surfactant molar ratios (Wo) and oil to surfactant mass ratios (S), have been applied for Pd-TiO2 preparation. The effect of ME properties on the morphology of Pd nanoparticles formed at TiO2 surface and an effect of Pd size and distribution on the surface and photocatalytic properties of Pd-TiO2 were investigated. Microemulsion systems were characterized...
-
Structure and properties comparison of poly(ether-urethane)s based on nonpetrochemical and petrochemical polyols obtained by solvent free two-step method
PublicationThe application of thermoplastic polyurethanes (TPU) is becoming more and more extensive, and the decreasing of used petrochemical monomers and reduction of energy for the polymerization and processing processes is getting increasingly important. In this paper, we confirmed the positive influence of high bio-based monomers contents (by replacing petrochemical polyol and glycol by bio-based counterparts) on processing and properties...
-
The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance
PublicationTitanium dioxide nanotubes are regarded as one of the most important functional materials and due to their unique electronic properties, chemical stability and photocorrosion resistance, they find applications in, for example, highly efficient photocatalysis or perovskite solar cells. Nevertheless, modification of TiO2 nanotubes is required to overcome their main drawback, i.e. large energy bandgap (>3.2 eV) limiting their ability...
-
Signature of Oxide-Ion Conduction in Alkaline-Earth-Metal-Doped Y3GaO6
PublicationWe have studied alkaline-earth-metal-doped Y3GaO6 as a new family of oxide-ion conductor. Solid solutions of Y3GaO6 and 2% −Ca2+-, −Sr2+-, and −Ba2+-doped Y3GaO6, i.e., Y(3−0.06)M0.06GaO6−δ (M = Ca2+, Sr2+, and Ba2+), were prepared via a conventional solid-state reaction route. X-ray Rietveld refined diffractograms of all the compositions showed the formation of an orthorhombic structure having the Cmc21 space group. Scanning electron...
-
Voltammetric and biological studies of folate-targeted non-lamellar lipid mesophases
PublicationFolate-targeted lipid nanostructures are promising strategies for the development of biocompatible drug delivery systems. The objective of this study was to evaluate the efficacy of drug delivery to cancer cells by folate-targeted lipid mesophases, cubosomes (CUB) and hexosomes (HEX), loaded with doxorubicin (DOX). Three cancer-derived cell lines (KB, HeLa, T98G) exhibiting different expressional levels of folate receptor protein...
-
Ammonium and potassium vanadates: synthesis, physicochemical characterization, and applications
PublicationThis doctoral thesis is devoted to the synthesis and investigation of ammonium/potassium vanadates, which constitute an interesting group of materials due to their potential applications in electrochemical devices and photocatalysis. The scope of the conducted experimental work included the synthesis of ammonium/potassium vanadates, their physicochemical characterization using various methods (spectroscopy, microscopy, thermal...
-
Structure versus hydrolytic and thermal stability of bio-based thermoplastic polyurethane elastomers composed of hard and soft building blocks with high content of green carbon
PublicationNowadays, sustainability plays a key role in the design and synthesis of new materials. One of the methods for the preparation of green materials is incorporation into their structure the monomers with a high content of green carbon. Therefore, the aim of this work was to investigate the influence of the type and molecular mass of two bio-based polyester polyols and bio-glycol on the properties of aliphatic partially bio-based...
-
Enhanced cellulose extraction from agave plant (Agave americana Species) for synthesis of magnetic/cellulose nanocomposite for defluoridation of water
PublicationResearch on fluoride removal from water is currently focusing on the development of innovative materials for defluoridation water. The current study extracted and used enhanced cellulose from Agave americana species to synthesize a magnetic/cellulose nanocomposite for water defluoridation. Strong and light binary acids (H2SO4 and CH3COOH) were utilized to pretreat raw material to enhance cellulose extraction. Central composite...
-
Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization
PublicationPolymer recycling techniques experience a maturity period of design and application. Rubbers comprise a high proportion of polymer wastes, highly flammable and impossible to re-melt. Polymer composites based on ground tire rubber (GTR) and ethylene-vinyl acetate copolymer (EVA) containing carbon black (CB) (1–50 phr), with variable EVA/GTR weight composition (10/90, 25/75, 50/50, 75/25 and 90/10), and processing temperature (Low:...
-
Wojciech Bącalski
People