Search results for: ENVIRONMENTAL SENSING
-
Perspectives of Fluctuation-Enhanced Gas Sensing by Two-Dimensional Materials
PublicationWe present the results of gas sensing using the fluctuation-enhanced sensing method in selected two-dimensional materials (2DMs). We claim that gas sensing selectivity can be improved further by considering semiconducting two-dimensional materials doped by noble metal nanoparticles. The 2DMs' structures exhibit some imperfections defined by their structure, occurring repeatedly there. These imperfections are adsorption-desorption...
-
Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
PublicationWe discuss the implementation challenges of gas sensing systems based on low-frequency noise measurements on chemoresistive sensors. Resistance fluctuations in various gas sensing materials, in a frequency range typically up to a few kHz, can enhance gas sensing by considering its intensity and the slope of power spectral density. The issues of low-frequency noise measurements in resistive gas sensors, specifically in two-dimensional...
-
N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction
PublicationA precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine–formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV–vis spectra, and N2 adsorption–desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublicationIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function
PublicationObject detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...
-
Radar and Sonar Imaging and Processing
PublicationThe 21 papers (from 61 submitted) published in the Special Issue “Radar and Sonar Imaging Processing” highlighted a variety of topics related to remote sensing with radar and sonar sensors. The sequence of articles included in the SI dealt with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used.
-
Spiral Search Grasshopper Features Selection with VGG19-ResNet50 for Remote Sensing Object Detection
PublicationRemote sensing object detection plays a major role in satellite imaging and is required in various scenarios such as transportation, forestry, and the ocean. Deep learning techniques provide efficient performance in remote sensing object detection. The existing techniques have the limitations of data imbalance, overfitting, and lower efficiency in detecting small objects. This research proposes the spiral search grasshopper (SSG)...
-
Radar and Sonar Imaging and Processing (2nd Edition)
PublicationThe 14 papers (from 29 submitted) published in the Special Issue “Radar and Sonar Imaging Processing (2nd Edition)” highlight a variety of topics related to remote sensing with radar and sonar sensors. The sequence of articles included in the SI deal with a broad profile of aspects of the use of radar and sonar images in line with the latest scientific trends, in which the latest developments in science, including artificial intelligence,...
-
New approaches for improving selectivity and sensitivity of resistive gas sensors: a review
PublicationPurpose – This paper aims to present the methods of improving selectivity and sensitivity of resistance gas sensors. Design/methodology/approach – This paper compares various methods of improving gas sensing by temperature modulation, UV irradiation or fluctuation-enhanced sensing. The authors analyze low-frequency resistance fluctuations in commercial Taguchi gas sensors and the recently developed tungsten trioxide (WO3) gas-sensing...
-
Fluctuation enhanced gas sensing using UV irradiated Au-nanoparticle-decorated WO3-nanowire films
PublicationWO3 nanowires (WO3-NWs) decorated with gold nanoparticles (AuNPs) were utilized in resistive gas sensor devices to detect ethanol by use of fluctuation enhanced sensing (FES). The experimental system records both DC resistance and fluctuations of the sensing film. Our data verify that the sensitivity and selectivity of the gas sensor are improved by applying FES when the sensor is stimulated with a combination of UV light and heating....
-
Modern remote sensing and the challenges facing education systems in terms of its teaching
PublicationCurrently the fastest growing area of geodesy is undoubtedly remote sensing. The importance that it has recently conducted on the effectiveness of worldwide research determines its huge success. Examination of the specific characteristics of objects without direct contact with them is a key feature has opened the way to the new very interesting areas of contemporary research. In this light, it seems reasonable to say that there...
-
Characterization of various drinking waters by new potentiometric taste sensor with lipid, lipid-like polymer membranes
PublicationA new sensing system comprising five all-solid-state electrodes with lipid, lipid like-polymer membranes was applied for rapid qualitative and quantitative analysis of various drinking waters. The results elaborated by chemometric methods revealed sensitivity to CO2 content in drinking water, suggesting that this sensing system could be used as a taste sensor. The ability of taste sensor to perform quantitative analysis of minerals...
-
Jaroslaw Tegowski prof. dr hab.
PeopleJaroslaw Tegowski was born in Olsztyn, Poland, in 1955. He received the M.S. degree in physics from the University of Gdansk, Gdansk, Poland, in 1981, and the Ph.D. degree in physical oceanography in 1995 and the habilitation degree from the Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland, in 2007. From 1983 to 2008, he was a Research Assistant and a next Associate Professor at the Marine Acoustical Laboratory,...
-
Remote Sensing in Vessel Detection and Navigation
PublicationThe Special Issue (SI) “Remote Sensing in Vessel Detection and Navigation” highlighted a variety of topics related to remote sensing with navigational sensors. The sequence of articles included in this Special Issue is in line with the latest scientific trends. The latest developments in science, including artificial intelligence, were used. The 15 papers (from 23 submitted) were published.
-
Near-Field Wireless Sensing of Plastics and Papers Using Frugal Peel-Off Passive Tag
PublicationThis article presents a novel frugal approach of testing plastics and papers using a near-field microwave sensing technique with a peel-off tag. The proposed sensing technique involves two electrical entities: the sensor, which may be regarded as a reader, and a disposable tag. The reader is a modified design of a gap-coupled microstrip line (GCML) sensor, while the passive tag is a standard double-ring complementary split-ring...
-
Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq
PublicationOne of the most common types of natural disaster, floods can happen anywhere on Earth, except in the polar regions. The severity of the damage caused by flooding can be reduced by putting proper management and protocols into place. Using remote sensing and a geospatial methodology, this study attempts to identify flood-vulnerable areas of the central district of Duhok, Iraq. The analytical hierarchy process (AHP) technique was...
-
Investigation of sensing mechanism of Nasicon electrocatalytic sensors in nitrogen dioxide and ammonia
PublicationIn this paper a sensing mechanism of Nasicon electrocatalytic sensor in nitrogen dioxide and ammonia is investigated. Both gases are environmentally hazardous and contain nitrogen atom in the molecule. However, it seems that their sensing mechanism in electrocatalytic sensor could be totally different. Namely, the maximum sensitivity for each gas was obtained at different temperatures. Also, different auxiliary layers are formed...
-
Development of novel optoelectronic sensory structures utilising colour centres in nanodiamonds and their interactions with analytes
PublicationThe goal of this dissertation was to develop and assess surface modifications of fluorescent nanodiamonds (NDs) for optical sensing. Three modification routes were tested, each aimed at a different application. Modification with poly-L-lysine (pLys) was verified for optical sensing of pH via an interrelationship between electrically negative (NV¯) and neutral (NV0) nitrogen-vacancy centres. Immobilisation of Ochratoxin A (OTA),...
-
Increasing the Geometrical and Interpretation Quality of Unmanned Aerial Vehicle Photogrammetry Products Using Super-Resolution Algorithms
PublicationUnmanned aerial vehicles (UAVs) have now become very popular in photogrammetric and remote-sensing applications. Every day, these vehicles are used in new applications, new terrains, and new tasks, facing new problems. One of these problems is connected with flight altitude and the determined ground sample distance in a specific area, especially within cities and industrial and construction areas. The problem is that a safe flight...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Direct spectrum detection based on Bayesian approach
PublicationThe paper investigates the Bayesian framework's performance for a direct detection of spectrum parameters from the compressive measurements. The reconstruction signal stage is eliminated in by the Bayesian Compressive Sensing algorithm, which causes that the computational complexity and processing time are extremely reduced. The computational efficiency of the presented procedure is significantly...
-
Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole
PublicationIn this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The...
-
New approaches for improving selectivity and sensitivity of resistive gas sensors: A review
PublicationResistive gas sensors are very popular and reliable but suffer from low selectivity and sensitivity. Various methods have been suggested to improve both features without increasing the number of sensors in gas detection systems. Fluctuation enhanced gas sensing was proposed to improve gas detection efficiency by analyzing low-frequency resistance fluctuations, and noise parameters can be more informative than the single DC resistance...
-
Spectrum Sensing Based on Hybrid Spectrum Handoff in Cognitive Radio Networks
PublicationThe rapid advancement of wireless communication combined with insufficient spectrum exploitation opens the door for the expansion of novel wireless services. Cognitive radio network (CRN) technology makes it possible to periodically access the open spectrum bands, which in turn improves the effectiveness of CRNs. Spectrum sensing (SS), which allows unauthorized users to locate open spectrum bands, plays a fundamental part in CRNs....
-
GRAPHENE IN GAS CHEMIRESISTORS
PublicationGraphene has a range of unique physical properties which could be exploited in gas sensing. Every atom of graphene may be considered as a surface atom, able to interact even with single molecule of the target gas or vapour species resulting in the ultrasensitive sensor response. In this paper the potential of graphene as a nanomaterial for fabricating chemiresistors was described. Recent development in graphene sensors was considered...
-
Quantum dots in gas sensing a review
PublicationAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
Combined chemoresistive and in situ FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing
PublicationThe chemoresistive sensor response of nanoporous NiO films prepared by advanced gas deposition was investigated by combined resistivity and in situ FTIR spectroscopy, with and without simultaneous light illumination, to detect NO2 and acetone gases. The sensitivity towards NO2 increased dramatically under UV irradiation employing 275 nm light. Improved sensitivity was observed at an elevated temperature of 150 °C. In situ FTIR...
-
FIBRE-OPTIC SENSOR FOR SIMULTANEOUS MEASUREMENT OF THICKNESSAND REFRACTIVE INDEX OF LIQUID LAYERS
PublicationIn this paper, we present a fibre-optic sensor for simultaneous measurement of refractive index and thickness of liquid layers. We designed an experimental low-coherence setup with two broadband light sources and an extrinsic fibre-optic Fabry–Pérot interferometer acting as the sensing head. We examined how the refractive index of a liquid film and its thickness affect spectrum at the output of a fibre-optic interferometer. We...
-
UV Light-Modulated Fluctuation-Enhanced Gas Sensing by Layers of Graphene Flakes/TiO2 Nanoparticles
PublicationWe present experimental results of fluctuation-enhanced gas sensing by low-cost resistive sensors made of a mixture of graphene flakes and TiO2 nanoparticles. Both components are photocatalytic and activated by UV light. Two UV LEDs of different wavelengths (362 and 394 nm) were applied to modulate the gas sensing of the layers. Resistance noise was recorded at low frequencies, between 8 Hz and 10 kHz. The sensors’ response was...
-
Investigation of poly(3,4-ethylenedioxythiophene) deposition method influence on properties of ion-selective electrodes based on bis(benzo-15-crown-5) derivatives
PublicationGlassy carbon electrodes modified by conductive polymers and membrane with derivatives of bis(benzo-15-crown-5) were tested as solid contact ion selective electrodes for K+ ions concentration determination. PEDOT with PSS, Cl- and ClO4- counter ions was electrochemically deposited onto glassy carbon substrates using four different electrochemical approaches (potentiostatic, galvanostatic, potentiodynamic and potentiostatic pulses)....
-
Resistive gas sensors – Perspectives on selectivity and sensitivity improvement
PublicationResistive gas sensors are very popular and relatively inexpensive; they can operate at elevated or room temperature for years on end. The main disadvantage of resistive gas sensors is their limited selectivity and sensitivity, but various methods have been applied to improve their behavior. The composition of the porous gas sensing layer, or changes in the sensor’s operating temperature, can enhance the gas detection ability. Furthermore, emerging...
-
Smartphone-Assisted and Optical Quantification of Copper and Glucose Using Palm Wine-Tailored Carbon Dots and Their Multiple Logic Gate Application
PublicationIn this work, potassium, sulfur, nitrogen, and chlorine self-doped carbon dots (CDs) were hydrothermally synthesized using palm wine as a carbon source. The palm wine-derived CDs (PW-CDs) are amorphous in nature and displayed an average particle size of 4.19 ± 0.89 nm. The as-synthesized CDs are used to fabricate a photoluminescent sensing probe to simultaneously detect Cu2+ and glucose via the “Turn ON−OFF−ON” mechanism. The PL...
-
Optical Magnetometry Based on Nanodiamonds with Nitrogen-Vacancy Color Centers
PublicationNitrogen-vacancy color centers in diamond are a very promising medium for many sensing applications such as magnetometry and thermometry. In this work, we study nanodiamonds deposited from a suspension onto glass substrates. Fluorescence and optically detected magnetic resonance spectra recorded with the dried-out nanodiamond ensembles are presented and a suitable scheme for tracking the magnetic-field value using a continuous...
-
Low-volume label-free SARS-CoV-2 detection with the microcavity-based optical fiber sensor
PublicationAccurate and fast detection of viruses is crucial for controlling outbreaks of many diseases; therefore, to date, numerous sensing systems for their detection have been studied. On top of the performance of these sensing systems, the availability of biorecognition elements specific to especially the new etiological agents is an additional fundamental challenge. Therefore, besides high sensitivity and selectivity, such advantages...
-
Polypyrrole based gas sensor for ammonia detection
PublicationThe nature of polypyrrole response to toxic gases does not allow using the sensor in a conventional way. The main aim of this study is to acquire the information about the concentration using different approaches: a linear approximation, a non-linear approximation and a tangent method. In this paper a two-steps procedure for sensor response measurements has been utilized. Polypyrrole films were electrochemically synthesized on...
-
Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique
PublicationFluctuation-enhanced sensing (FES) is a very powerful odor and gas sensing technique and as such it can play a fundamental role in the control of environments and, therefore, in the protection of health. For this reason, we conduct a comprehensive survey on the state-of-the-art of the FES technique, highlighting potentials and limits. Particular attention is paid to the dedicated instrumentation necessary for the application of...
-
Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems
PublicationThis work is devoted to the identification properties of indium tin oxide (ITO) thin films responsible for their possible application in combined optical and electrochemical label-free sensing systems offering enhanced functionalities. Since any post-processing would make it difficult to identify direct relation between deposition parameters and properties of the ITO films, especially when deposition on temperature-sensitive substrates...
-
Multi-Temporal Analysis of Changes of the Southern Part of the Baltic Sea Coast Using Aerial Remote Sensing Data
PublicationUnderstanding processes that affect changes in the coastal zone and the ability to predict these processes in the future depends on the period for which detailed monitoring is carried out and on the type of coast. This paper analyzes a southern fragment of the Baltic coast (30 km), where there has been no anthropogenic impact (Slowinski National Park). The study was carried out covering a time interval of 65 years. Historic and...
-
Verification of Satellite Railway Track Position Measurements Making Use of Standard Co-Ordinate Determination Techniques
PublicationThe article presents the results of satellite railway track position measurements performed by a multidisciplinary research team, the members of which represented Gdansk University of Technology and Gdynia Maritime University. Measuring methods are described which were used for reconstructing the railway track axis position and diagnosing railway track geometry deformations. As well as that, the description of the novel method...
-
The Use of USV to Develop Navigational and Bathymetric Charts of Yacht Ports on the Example of National Sailing Centre in Gdańsk
PublicationApart from extensive infrastructure protection, modern yacht ports should primarily provide vessels with navigational safety associated with their maneuvering on the approach fairway, as well as mooring in the port aquatory. For this reason, yachts entering the harbor should have up-to-date, accurate, and reliable charts of the port and its surroundings. This article presents hydrographic surveys conducted in the National Sailing...
-
Comparison of Absorbed and Intercepted Fractions of PAR for Individual Trees Based on Radiative Transfer Model Simulations
PublicationThe fraction of absorbed photosynthetically active radiation (fAPAR) is a key parameter for estimating the gross primary production (GPP) of trees. For continuous, dense forest canopies, fAPAR, is often equated with the intercepted fraction, fIPAR. This assumption is not valid for individual trees in urban environments or parkland settings where the canopy is sparse and there are well-defined tree crown boundaries. Here, the distinction...
-
Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles
PublicationAn approach to a new kind of recommendation system design that suggests safe speed on the road is presented. Real data obtained on roads were used for the simulations. As part of a project related to autonomous road sign development, a number of measurements were carried out on both local roads and expressways. A speed recommendation model was created based on gathered traffic data employing the traffic simulator. Depending on...
-
A Cost-Effective Method for Reconstructing City-Building 3D Models from Sparse Lidar Point Clouds
PublicationThe recent popularization of airborne lidar scanners has provided a steady source of point cloud datasets containing the altitudes of bare earth surface and vegetation features as well as man-made structures. In contrast to terrestrial lidar, which produces dense point clouds of small areas, airborne laser sensors usually deliver sparse datasets that cover large municipalities. The latter are very useful in constructing digital...
-
Measurement of Seafloor Acoustic Backscatter Angular Dependence at 150 kHz Using a Multibeam Echosounder
PublicationAcoustic seafloor measurements with multibeam echosounders (MBESs) are currently often used for submarine habitat mapping, but the MBESs are usually not acoustically calibrated for backscattering strength (BBS) and cannot be used to infer absolute seafloor angular dependence. We present a study outlining the calibration and showing absolute backscattering strength values measured at a frequency of 150 kHz at around 10–20 m water...
-
3D Modeling of Discontinuity in the Spatial Distribution of Apartment Prices Using Voronoi Diagrams
Publication -
An Innovative Decision Support System to Improve the Energy Efficiency of Buildings in Urban Areas
Publication -
The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model
Publication -
Landsat 8 Data as a Source of High Resolution Sea Surface Temperature Maps in the Baltic Sea
Publication -
The Remotely and Directly Obtained Results of Glaciological Studies on King George Island: A Review
Publication