Filters
total: 4509
displaying 1000 best results Help
Search results for: multi-phase machine
-
Speed Observer Structure of Induction Machine Based on Sliding Super-Twisting and Backstepping Techniques
PublicationThis paper presents an analysis of the two speed observer structures which are based on the backstepping and sliding super twisting approach. The observer stabilizing functions result from the Lyapunov theorem. To obtain the observer tuning gains the observer structure is linearized near the equilibrium point. The rotor angular speed is obtained from non-adaptive dependence. In the sensorless control system structure the classical...
-
Evaluation the effectiveness of virtual machine integrated with CPU
PublicationIn the paper effectiveness of example CPU with integrated virtual machine is presented. The idea and implementation of virtual machine is shown. In next sections reference CPU and sample virtual machine is described. Finally optimality of the translation process is analysed.
-
Double Fed Induction Machine Drives
PublicationContents of the Chapter 22:Machine model.Properties of the DFM.Steady state machine operation.Control rules and decoupled control.Decoupling based on MM machine model.Decoupling based on vector model.Decoupling based on rotor current equation.Overall control system.Control system based on MM model.Control system based on vector model.Estimation of variables.Calculation of the angle between stator and rotor.Remarks about digital...
-
A new multi-process collaborative architecture for time series classification
PublicationTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Five-phase squirrel-cage motor. Construction and drive properties
PublicationThis paper presents the simulation and experimental results of a five-phase squirrel-cage induction motor. The new machine has been designed to operate in a drive system with third harmonic rotor flux injection in order to improve the motor torque utilization. The motor structure, the mathematical model as well as the laboratory prototype have been described. The motor speed-torque characteristics and transients are elaborated...
-
Application of sliding switching functions in backstepping based speed observer of induction machine
PublicationThe paper presents an analysis of the speed observer which is based on the backstepping and sliding mode approach. The speed observer structure is based on the extended mathematical model of an induction machine. The observer structure is based on the measured phase stator currents and transformed to ( αβ ) coordinate system. The stator voltage vector components are treated as known values. Additionally, such an observer structure...
-
Ireneusz Kreja dr hab. inż.
PeopleGraduated from the mathematical class at the Nicolaus Copernicus High School in Gdańsk (1974). Master of Sciences in Civil Engineering after studies at Gdansk University of Technology (GUT), Poland (1974-1979). Since 1979 became an employee of the GUT. In 1989 earned a Ph.D. degree in Civil Engineering (with grade "Summa cum Laude") from the GUT. In 2008 obtained a D. Sc. (Habilitation) degree in Civil Engineering (with grade...
-
Development and performance analysis of a novel multiphase doubly-fed induction generator
PublicationThis paper presents the research into the design and performance analysis of a novel five-phase doubly-fed induction generator (DFIG). The designed DFIG is developed based on standard induction motor components and equipped with a five-phase rotor winding supplied from the five-phase inverter. This approach allows the machine to be both efficient and reliable due to the ability of the five-phase rotor winding to operate during...
-
Machine-aided detection of SARS-CoV-2 from complete blood count
PublicationThe current gold standard for SARS-CoV-2 detection methods lacks the functionality to perform population screening. Complete blood count (CBC) tests are a cost-effective way to reach a wide range of people – e.g. according to the data of the Central Statistical Office of Poland from 2016, there are 3,000 blood diagnostic laboratories in Poland, and 46% of Polish people have at least one CBC test per year. In our work, we show...
-
Ryszard Strzelecki prof. dr hab. inż.
People -
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublicationIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
Design advantages and analysis of a novel five-phase doubly-fed induction generator
PublicationPurpose – The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG). Design/methodology/approach – This paper presents the results of a research work related to fivephase DFIG framing, including the development of an analytical model, FEM analysis as well as the results of laboratory tests of the prototype. The proposed behavioral level analytical model is based...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Broken Rotor Symptons in the Sensorless Control of Induction Machine
PublicationInverter fed sensorless controlled variable speed drives with induction machine are widely used in the industry applications, also in wind power generation and electric vehicles. On-line self diagnostic systems implementation is needed for early stage fault detection and avoiding a critical fault. Diagnostic algorithms in modern DSP-based controllers can operate simultaneously with control system functions. In the closed-loop controlled...
-
How Machine Learning Contributes to Solve Acoustical Problems
PublicationMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Dead time effects compensation strategy by third harmonic injection for a five-phase inverter
PublicationThis paper proposes a method for compensation of dead-time effects for a fivephase inverter. In the proposed method an additional control subsystem was added to the field-oriented control (FOC) scheme in the coordinate system mapped to the third harmonic. The additional control loop operates in the fixed, orthogonal reference frame ( α - β coordinates) without the need for additional Park transformations. The purpose of this method...
-
Sensorless Field Oriented Control of Five Phase Induction Motor with Third Harmonic Injection
PublicationIn this paper, a sensorless field oriented control system of five-phase induction machine with the 3rd harmonic rotor flux is presented. Two vector models, α1-β1 and α3-β3, were transformed into d1-q1, d3-q3 models oriented in rotating frames, which correspond to the 1st and 3rd harmonic plane respectively. The authors proposed the linearization of the model in d-q coordinate frames by introducing a new variable “x” which is proportional...
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublicationThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
MACHINE VISION DETECTION OF THE CIRCULAR SAW VIBRATIONS
PublicationDynamical properties of rotating circular saw blades are crucial for both production quality and personnel safety. This paper presents a novel method for monitoring circular saw vibrations and deviations. A machine vision system uses a camera and a laser line projected on the saw’s surface to estimate vibration range. Changes of the dynamic behaviour of the saw were measured as a function of the rotational speed. The critical rotational...
-
Speech Analytics Based on Machine Learning
PublicationIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Dynamic variables limitation for backstepping control of induction machine and voltage source converter
PublicationDynamic variables limitation for backstepping control of induction machine and voltage source converter The paper presents the method of control of an induction squirrel-cage machine supplied by a voltage source converter. The presented idea is based on an innovative method of the voltage source converter control, consisting in direct joining of the motor control system with the voltage source rectifier control system. The combined...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublicationThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
Calculation of self and mutual inductances of the switched reluctance machine mathematical model.
PublicationA mathematical model of the switched reluctance machine (SRM) in a drive system obtained using Lagrange's energy method and a method of calculation of self and mutual inductances of the SRM are presented in the paper. The self and mutual inductances are elements of Lagrange's function in generalised coordinates and have been calculated using the finite element method (FEM). Selected calculation results for the particular machine...
-
Planning optimised multi-tasking operations under the capability for parallel machining
PublicationThe advent of advanced multi-tasking machines (MTMs) in the metalworking industry has provided the opportunity for more efficient parallel machining as compared to traditional sequential processing. It entailed the need for developing appropriate reasoning schemes for efficient process planning to take advantage of machining capabilities inherent in these machines. This paper addresses an adequate methodical approach for a non-linear...
-
Asking Data in a Controlled Way with Ask Data Anything NQL
PublicationWhile to collect data, it is necessary to store it, to understand its structure it is necessary to do data-mining. Business Intelligence (BI) enables us to make intelligent, data-driven decisions by the mean of a set of tools that allows the creation of a potentially unlimited number of machine-generated, data-driven reports, which are calculated by a machine as a response to queries specified by humans. Natural Query Languages...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Profile irregularities of turned surfaces as a result of machine tool interactions
PublicationThe paper describes the influence of the machining operation on a surface, which disturbs the projection of the tool profile in the form of its relative movements with respect to the object. The elements of the machine tool undergo constant wear during the machining process, it is therefore important to recognize the effects of their influence on the surface's irregularities. Amplitude-frequency analysis of lateral profiles has...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Decisional DNA (DDNA) Based Machine Monitoring and Total Productive Maintenance in Industry 4.0 Framework
PublicationThe entire manufacturing spectrum is transforming with the advent of Industry 4.0. The features of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) were utilized for developing Virtual Engineering Objects (VEO), Virtual Engineering Process (VEP) and Virtual Engineering Factory (VEF), which in turn facilitate the creation of smart factories. In this study, DDNA based Machine Monitoring for Total Maintenance...
-
Multi-criteria Robot Selection Problem for an Automated Single-Sided Lapping System
PublicationFlat lapping is a crucial process in a number of precision manufacturing technologies. Its aim is to achieve extremely high flatness of the workpiece. Single-sided lapping machines have usually standard kinematic systems and are used in conjunction with conditioning rings, which are set properly be-tween the center and the periphery of the lapping plate. In this paper, instead of conventional single-side lapping machine, an automated...
-
Machine Learning Techniques in Concrete Mix Design
PublicationConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublicationIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Nonlinear control of five phase induction motor with synchronized third harmonic flux injection
PublicationThe paper deals with the novel control system for five phase induction motor (IM) that enables the injection of the rotor flux 3rd harmonic component. Two multiscalar models are transformed from the 1-1 and 2-2 vector models developed in the 1st and 3rd harmonic planes. Based on the obtained multiscalar models the synthesis of dual multiscalar control is established. The obtained two multiscalar control systems can independently...
-
Rotor-Flux Vector based Observer of Interior Permanent Synchronous Machine
PublicationThe sensorless control system of the interior permanent magnet machine is considered in this paper. The control system is based on classical linear controllers. In the machine, there occurs non-sinusoidal distribution of rotor flux together with the slot harmonics, which are treated as the control system disturbances. In this case, the classical observer structure in the (d-q) is unstable for the low range of rotor speed resulting...
-
SSFR Test of Synchronous Machine for Different Saturation Levels using Finite-Element Method
PublicationIn this paper the StandStill Frequency Response characteristics (SSFR) of saturated synchronous generator (SG) have been calculated using Finite Element Method (FEM) analysis. In order to validate proposed approach for unsaturated conditions FEM simulation from Flux2D software has been compared with the measurements performed on the 10 kVA, 4- poles synchronous machine ELMOR GCe64a of salient rotor construction, equipped with a...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublicationThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublicationTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
Personal bankruptcy prediction using machine learning techniques
PublicationIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
An Analysis of Uncertainty and Robustness of Waterjet Machine Positioning Vision System
PublicationThe paper presents a new Automatic Waterjet Positioning Vision System (AWPVS) and investigates components of workpiece positioning accuracy. The main purpose of AWPVS is to precisely identify the position and rotation of a workpiece placed on a waterjet machine table. Two webcams form a basis for the system, and constitute its characteristics. The proposed algorithm comprises various image processing techniques to assure a required...
-
Algorytmy wyodrębniania składowych symetrycznych sygnału pomiarowego napięcia w przypadku asymetrii sieci trójfazowej
PublicationW artykule zaprezentowano działanie wybranych algorytmów wykorzystywanych do wyodrębniania składowych symetrycznych z sygnałów pomiarowych napięcia lub prądu w przypadku wystąpienia asymetrii trójfazowej sieci elektroenergetycznej. Weryfikacji działania algorytmów dokonano na podstawie badań symulacyjnych i laboratoryjnych w układzie w którym jako odbiornik zastosowano stojan maszyny asynchronicznej pierścieniowej. Określono wpływ...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublicationLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Non-Adaptive Rotor Speed Estimation of Induction Machine in an Adaptive Full-Order Observer
PublicationIn the sensorless control system of an induction machine, the rotor speed value is not measured but reconstructed by an observer structure. The rotor speed value can be reconstructed by the classical adaptive law with the integrator. The second approach, which is the main contribution of this paper, is the non-adaptive structure without an integrator. The proposed method of the rotor speed reconstruction is based on an algebraic...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublicationMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Machine Learning and Electronic Noses for Medical Diagnostics
PublicationThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublicationIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublicationThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublicationHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...