Filtry
wszystkich: 527
wybranych: 479
Wyniki wyszukiwania dla: aircraft operation, classification, neural networks
-
Automated hearing loss type classification based on pure tone audiometry data
PublikacjaHearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublikacjaThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
Towards Cancer Patients Classification Using Liquid Biopsy
PublikacjaLiquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier...
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublikacjaIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Application of autoencoder to traffic noise analysis
PublikacjaThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Economical methods for measuring road surface roughness
PublikacjaTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
Robustness in Compressed Neural Networks for Object Detection
PublikacjaModel compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...
-
Outlier detection method by using deep neural networks
PublikacjaDetecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublikacjaThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublikacjaIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublikacjaBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
Audio Feature Analysis for Precise Vocalic Segments Classification in English
PublikacjaAn approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
A Novel Iterative Decoding for Iterated Codes Using Classical and Convolutional Neural Networks
PublikacjaForward error correction is crucial for communication, enabling error rate or required SNR reduction. Longer codes improve correction ratio. Iterated codes offer a solution for constructing long codeswith a simple coder and decoder. However, a basic iterative code decoder cannot fully exploit the code’s potential, as some error patterns within its correction capacity remain uncorrected.We propose two neural network-assisted decoders:...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublikacjaHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublikacjaThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Inter-governmental Collaborative Networks for Digital Government Innovation Transfer -Structure, Membership, Operation
PublikacjaDigital government refers to the transformation of government organizations and their relationships with citizens, business and each other through digital technology. It entails digital innovation in processes, services, organizations, policies, etc. which are increasingly developed and tested in one country and transferred, after adaptation, to other countries. The process of innovation transfer and the underlying information...
-
Behavior Analysis and Dynamic Crowd Management in Video Surveillance System
PublikacjaA concept and practical implementation of a crowd management system which acquires input data by the set of monitoring cameras is presented. Two leading threads are considered. First concerns the crowd behavior analysis. Second thread focuses on detection of a hold-ups in the doorway. The optical flow combined with soft computing methods (neural network) is employed to evaluate the type of crowd behavior, and fuzzy logic aids detection...
-
Standard of living in Poland at regional level - classification with Kohonen self-organizing maps
PublikacjaThe standard of living is spatially diversified and its analyzes enable shaping regional policy. Therefore, it is crucial to assess the standard of living and to classify regions due to their standard of living, based on a wide set of determinants. The most common research methods are those based on composite indicators, however, they are not ideal. Among the current critiques moved to the use of composite...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublikacjaThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublikacjaThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublikacjaTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Mask Detection and Classification in Thermal Face Images
PublikacjaFace masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublikacjaTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Towards a classification of networks with asymmetric inputs
PublikacjaCoupled cell systems associated with a coupled cell network are determined by (smooth) vector fields that are consistent with the network structure. Here, we follow the formalisms of Stewart et al (2003 SIAM J. Appl. Dyn. Syst. 2, 609–646), Golubitsky et al (2005 SIAM J. Appl. Dyn. Syst. 4, 78–100) and Field (2004 Dyn. Syst. 19, 217–243). It is known that two non-isomorphic n-cell coupled networks can determine the same sets of...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublikacjaA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublikacjaPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublikacjaHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Approximation of Fractional Order Dynamic Systems Using Elman, GRU and LSTM Neural Networks
PublikacjaIn the paper, authors explore the possibility of using the recurrent neural networks (RNN) - Elman, GRU and LSTM - for an approximation of the solution of the fractional-orders differential equations. The RNN network parameters are estimated via optimisation with the second order L-BFGS algorithm. It is done based on data from four systems: simple first and second fractional order LTI systems, a system of fractional-order point...
-
Artificial Neural Networks for Comparative Navigation
Publikacja -
Neural Networks and the Evolution of Environmental Change
PublikacjaZmiany środowiskowe na Ziemii są odwieczne i liczą około 4 miliardy lat. Homo sapiens wpłynął na każdy aspekt środowiska ziemskiego w wyniku rozwoju ludzkości na przestrzeni ostatnich milionów lat. Ale nic tak nie wpłynęło na wzrost i szybkość zmian na Ziemi jak ludzka aktywność w ciągu ostatnich dwóch stuleci. Po raz pierwszy zmiany ekosystemów były tak intensywne i zachodziły na tka wielką skalę i z taką szybkością jak nigdy...
-
Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks
PublikacjaThe estimation of systolic and diastolic blood pressure using artificial neural network is considered in the paper. The blood pressure values are estimated using pulse arrival time, and additionally RR intervals of ECG signal together with respiration signal. A single layer recurrent neural network with hyperbolic tangent activation function was used. The average blood pressure estimation error for the data obtained from 21 subjects...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublikacjaThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublikacjaWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublikacjaThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublikacjaA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Ship Resistance Prediction with Artificial Neural Networks
PublikacjaThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Digits Recognition with Quadrant Photodiode and Convolutional Neural Network
PublikacjaIn this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublikacjaIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublikacjaEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublikacjaThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublikacjaArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Diagnosis of damages in family buildings using neural networks
PublikacjaThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....