Filtry
wszystkich: 218
wybranych: 194
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: ORR, CHITOSAN-MELAMINE
-
N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media.
PublikacjaBy simple thermal decomposition of low-cost precursors (chitosan, melamine) in an inert atmosphere, nitrogen-doped porous carbonaceous materials were prepared. The samples pyrolyzed at 700 C are composed of mainly mesoporous nitrogen-doped carbon nanosheets and partially graphitized carbon. The nanosheets contain a disordered area due to the strain imposed by the presence of nitrogen and/or oxygen groups in their structure. Some...
-
N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media
Publikacja -
Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost
PublikacjaImplementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually...
-
Chitosan pyrolysis in the presence of a ZnCl2/NaCl salts for carbons with electrocatalytic activity in oxygen reduction reaction in alkaline solutions
PublikacjaThe one-step carbonization of low cost and abundant chitosan biopolymer in the presence of salt eutectics ZnCl2/NaCl results in nitrogen-doped carbon nanostructures (8.5 wt.% total nitrogen content). NaCl yields the spacious 3D structure, which allows external oxygen to easily reach the active sites for the oxygen reduction reaction (ORR) distinguished by their high onset potential and the maximum turnover frequency of 0.132 e...
-
Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts
PublikacjaThe direct carbonization of low-cost and abundant chitosan biopolymer in the presencesalt eutectics leads to highly microporous, N-doped nanostructures. The microporous structureeasily manufactured using eutectic mixture (ZnCl2 -KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient...
-
Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films
PublikacjaThe antimicrobial properties of chitosan solutions and films against selected bacteria and the effect of chitosan incorporation into gelatin films were studied. The bactericidal effect of chitosan solutions increased with time and temperature of sample incubation. Two psychrotrophic strains Pseudomonas fluorescens and Listeria innocua were more sensitive to chitosan than mesophilic strains Escherichia coli and Staphylococcus aureus....
-
Melamine-modified boron-doped diamond towards enhanced detection of adenine, guanine and caffeine
PublikacjaThis work describes the electrochemical method of boron-doped diamond (BDD) modification by poly-melamine to obtain organic film. The detection of adenine, guanine and caffeine were carried out by differential pulse wave voltammetry. The poly-melamine modified B-NCD electrodes exhibit excellent activity towards the electrochemical oxidation of all examined analytes. The poly-melamine modified BDD electrodes in all measurements...
-
Magnetic superhydrophobic melamine sponges for crude oil removal from water
PublikacjaThis paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency...
-
Chitosan-Based Membranes as Gentamicin Carriers for Biomedical Applications — Influence of Chitosan Molecular Weight
PublikacjaOver the past decade, much attention has been paid to chitosan as a potential drug carrier because of its non-toxicity, biocompatibility, biodegradability and antibacterial properties. The effect of various chitosan characteristics on its ability to carry different antibiotics is discussed in the literature. In this work, we evaluated the influence of the different molecular weights of this polymer on its potential as an antibacterial...
-
Superhydrophobic and superoleophilic melamine sponges impregnated with deep eutectic solvents for oil spill cleanup
PublikacjaThe extensive extraction of oil from the bottom of seas and oceans and its transportation by tankers increase the risk of potential environmental disasters associated with hydrocarbon fractions entering water reservoirs. Therefore, this paper presents the preparation of a simple impregnation of a melamine sponge with deep eutectic solvents (DES), which can be obtained from natural sources, including coconut oil, palm kernel oil,...
-
Chitosan-based nanomaterials for removal of water pollutants
PublikacjaThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Customizing nano-chitosan for sustainable drug delivery
PublikacjaChitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various...
-
An air-assisted dispersive liquid phase microextraction method based on a hydrophobic magnetic deep eutectic solvent for the extraction and preconcentration of melamine from milk and milk-based products
PublikacjaIn the current research, a fast and sustainable air-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction followed by UV–Vis spectrophotometry measurements was optimized for the extraction and determination of melamine in milk and milk-based products. The central composite design was applied for the optimization of factors affecting the recovery of melamine. Quantitative extraction of...
-
Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution
PublikacjaPorous chitosan composites using CO2 dissolution procedure and including water soluble N-propylphosphonic chitosan derivative (p-CHI) were obtained and characterized. In contrast to the control material, composites containing modified chitosan distinguished by a rapid moisture absorption and good adhesion to the skin. The FTIR analysis confirmed the presence of propylphosphonic group in the structure of the polymer. The porosity...
-
Kinetics of the crosslinking reaction between genipin and chitosan solutions
PublikacjaThe kinetics of the chitosan crosslinking reaction with genipin was examined. The strong relationship was found between crosslinking agent concentration, chitosan concentration, temperature and gelling time. Data obtained will be used in the proper selection of optimal genipin concentration for crosslinking chitosan solutions.
-
Preparation and characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using chitosan–CO2 solution
PublikacjaNovel porous scaffolds composed of chitosan, collagen and gelatin were prepared by the multistep procedure involving final freeze-drying and characterized. To eliminate the need for residual acid removal from the material after drying, carbon dioxide saturation process was used for chitosan blend formulation. The use of CO2 for chitosan dissolution made the scaffold preparation process more reproducible and economically sustainable....
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublikacjaA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation
PublikacjaA new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling...
-
An influence of molecular weight, deacetylation degree of chitosan xerogels on their antimicrobial activity and cytotoxicity. Comparison of chitosan materials obtained using lactic acid and CO2 saturation.
PublikacjaThis paper presents a comparison of the antimicrobial activity and cytotoxicity against L929 cells of chitosan xerogels prepared by dissolving the polymer in a solution of lactic acid (LA) or carbonic acid (CO2) and then freeze-drying. There was no simple relationship between the antimicrobial activity and cytotoxicity of the samples obtained using both techniques (LA and CO2). Chitosan materials obtained by the LA method in a...
-
Chitosan-based inks for 3D printing and bioprinting
PublikacjaThe advent of 3D-printing/additive manufacturing in biomedical engineering field has introduced great potential for the preparation of 3D structures that can mimic native tissues. This technology has accelerated the progress in numerous areas of regenerative medicine, especially led to a big wave of biomimetic functional scaffold developments for tissue engineering demands. In recent years, the introduction of smart bio-inks has...
-
Effects of the Origin and Deacetylation Degree of Chitosan on Properties of Its Coatings on Titanium
PublikacjaThe properties of chitosan coatings on titanium surfaces may be influenced by a variety of factors, including their chemical characteristics and the deposition method. The aim of this research was to determine the influence of a chitosan’s origin (a type of shrimp) and deacetylation degree (DD), when deposited on a very smooth titanium surface, on adhesion and biological behavior. The tests were performed using chitosan of a degree...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublikacjaFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Green and sustainable hydrogels based on quaternized chitosan to enhance wound healing
PublikacjaHydrogel-based biomaterials applied as wound dressings provide the wound with a moist environment, which facilitates tissue regeneration through granulation and re-epithelialization. The inherent flexibility and adjustable architecture of hydrogels enables incorporation of cells, antimicrobial drugs, growth factors, and bioactive compounds, which leads to expediting wound contraction and enhancing the regeneration process. The...
-
Chitin and derivative chitosan-based structures — Preparation strategies aided by deep eutectic solvents: A review
PublikacjaThe high molecular weight of chitin, as a biopolymer, challenges its extraction due to its insolubility in the solvents. Also, chitosan, as the N-deacetylated form of chitin, can be employed as a primary material for different industries. The low mechanical stability and poor plasticity of chitosan films, as a result of incompatible interaction between chitosan and the used solvent, have limited its industrialization. Deep eutectic...
-
Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study
PublikacjaFilms based on fish gelatin, chitosan and blend of fish gelatin and chitosan before and after cross-linking with EDC have been characterized by FT-IR spectroscopy. The FT-IR spectrum of fish gelatin film showed the characteristic amide I, amide II and amide III bands, and the FT-IR spectrum of chitosan film confirmed that the polymer was only a partially deacetylated product, and included CH3-C=O and NH2 groups, the latter both...
-
Chitosan-protein scaffolds loaded with lysostaphin as potential antistaphylococcal wound dressing materials.
PublikacjaAIMS: The development of technology for preparing chitosan-protein scaffolds loaded with lysostaphin, which potentially could be used as dressing for wound treatment and soft tissue infections caused by Staphylococcus aureus. METHODS AND RESULTS: The unique technology of chitosan solubilization using gaseous CO(2) instead of organic or inorganic acids was used for the incorporation of lysostaphin, the enzyme that exhibits bactericidal...
-
Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite
PublikacjaNovel porous scaffolds composed of chitosan, collagen and gelatin were prepared and characterized. For preparing scaffolds gelatin and collagen isolated from fish skins with various physicochemical properties were used. In order to reduce preparation solubility glutaraldehyde in the amount of 1%, w/w relative to the total biopolymers weight in solution was used. All obtained biomaterials showed a homogeneous porosity. Protein polymer...
-
Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
PublikacjaToday, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation...
-
Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study
PublikacjaThe ability to form strong intermolecular interactions by linear glucosamine polysaccharides with collagen is strictly related to their nonlinear dynamic behavior and hence bio-lubricating features. Type III collagen plays a crucial role in tissue regeneration, and its presence in the articular cartilage affects its bio-technical features. In this study, the molecular dynamics methodology was applied to evaluate the effect of...
-
From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour
PublikacjaThis study presents an innovative method for producing thermosensitive bioink from chitosan hydrogels saturated with carbon dioxide and agarose. It focuses on a detailed characterisation of their physicochemical properties and potential applications in biomedicine and tissue engineering. The ORO test approved the rapid regeneration of the three-dimensional structure of chitosan–agarose composites in a unidirectional bench press...
-
Chitosan/poly(4-vinylpyridine) coatings formed on AgNPs-decorated titanium
PublikacjaElectrophoretic deposition (EPD) of chitosan/poly(4-vinylpyridine) (chit/P4VP) coatings on titanium substrates previously decorated with silver nanoparticles (AgNPs) was performed at different content of P4VP in the suspension and different voltage values. The results revealed that the composite coatings were formed, well-adjacent to the titanium substrate, of suitable roughness, hydrophilicity, and corrosion resistance. The voltage...
-
Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate
PublikacjaCurrently, a significant problem is the production of coatings for titanium implants, which will be characterized by mechanical properties comparable to those of a human bone, high corrosion resistance, and low degradation rate in the body fluids. This paper aims to describe the properties of novel chitosan/Eudragit E 100 (chit/EE100) coatings deposited on titanium grade 2 substrate by the electrophoretic technique (EPD). The deposition...
-
Synthesis and Physicochemical Characteristics of Chitosan-Based Polyurethane Flexible Foams
PublikacjaThe use of shrimp waste to obtain chitosan (Ch) is an essential issue, considering a circular economy, waste management, and its application to environmentally friendly materials. In this study, northern prawn shells were utilized to obtain Ch, which could then be used for synthesizing chitosan-based polyurethane (PUR+Ch) foams with different Ch concentration. The chemical structure, morphology, hardness, thermal properties, viscoelastic...
-
REVIEW OF CURRENT RESEARCH ON CHITOSAN AS A RAW MATERIAL IN THREE-DIMENSIONAL PRINTING TECHNOLOGY IN BIOMEDICAL APPLICATIONS
PublikacjaThree-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However,...
-
A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing
PublikacjaDue to its remarkable and promising biological and structural properties, chitosan has been widely studied in several potential applications in the biomedical sector. Attempts are being made to use this polymer and its properties in thermoplastics dedicated to 3D printing in FDM technology. However, chitosan can be processed only from acid solution, which limits its applications. The paper presents a new path for the production...
-
The Drop-in-Drop Encapsulation in Chitosan and Sodium Alginate as a Method of Prolonging the Quality of Linseed Oil
PublikacjaNowadays, the encapsulation of sensitive products by various techniques has become popular as a promising preservation method. In particular, this applies to oils with a high content of unsaturated fatty acids and a high susceptibility to deterioration. This work presents the possibility of using a chitosan and sodium alginate in the form of a hydrogel membrane to protect food ingredients such as linseed oil, which is stored in...
-
Biological properties of chitosan/Eudragit E 100 and chitosan/poly(4-vinylpyridine) coatings electrophoretically deposited on AgNPs-decorated titanium substrate
PublikacjaThe objective of the study was the determination of the response, in contact with human osteoblast-like MG-63 cells, of electrophoretically deposited coatings composed of chitosan (CS), Eudragit E 100 (EE100), or poly(4- vinylpyridine) (P4VP) on a silver nanoparticle (AgNPs)-decorated titanium substrate. Before deposition, the substrate was coated with silver by electro-reduction of silver nitrate. The coatings deposition was carried...
-
Few-Layer Black Phosphorus/Chitosan Nanocomposite Electrodes via Controlled Electrodeposition for Enhanced Electrochemical Kinetic Performance
PublikacjaThis study presents the preparation and characterization of few-layer black phosphorus (FLBP) chitosan electrodes by controlled electrochemical deposition of chitosan nanoparticles on FLBP-modified glassy carbon electrodes. FLBP was prepared by solvent-assisted exfoliation of bulk BP and was further modified with chitosan forming together a nanocomposite, including easy cross-linking with nanomaterials and film-forming properties....
-
Unlocking the electrochemical performance of glassy carbon electrodes by surface engineered, sustainable chitosan membranes
PublikacjaChitosan coatings, derived from crustacean shell waste, possess inherent biocompatibility and biodegradability, rendering them suitable for various biomedical and environmental applications, including electrochemical biosensing. Its amine and hydroxyl functional groups offer abundant sites for chemical modifications to boost the charge transfer kinetics and provide excellent adhesion, enabling the construction of robust electrode-coating...
-
Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations
PublikacjaChitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon...
-
Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications
Publikacja -
Chitosan, Collagen and Gelatin in the design of novel materials with antimicrobial acticity
PublikacjaMedical devices containing and releasing antiinfective agents directly on the site of injury are a common group of materials available and widely used in treating difficult to heal wounds. Sustained contact of the active agent to the damaged tissue, needed to inhibit infection and preservation of microbiological purity of the wound, is provided by the immobilization antimicrobial agents on the surface of the matrix material or...
-
The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology
PublikacjaThe last decades have witnessed a major advancement and development in three-dimensional (3D) printing technology. In the future, the trend’s utilization of 3D printing is expected to play an important role in the biomedical field. This work presents co-extrusion of the polylactic acid (PLA), its derivatives (sPLA), and chitosan with the aim of achieving filaments for printing 3D objects, such as biomedical tools or implants. The...
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublikacjaTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
-
Polyurethanes modified with natural polymers for medical application. I. Polyurethanes/ Chitosan and polyurethane/collagen.
PublikacjaFor over three decades polyurethanes (PUR or PU) have been reported for application in a variety of medical devices. These polymers consist of hard and soft segments, which allow for more subtle control of their structure and properties. By varying the composition of the different segments, properties of PURcan be tuned up for use in many areas of medicine. Recently there is a great interest in modification of biomedical PUR with...
-
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer
PublikacjaThe surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the...
-
Effect of Chitosan Solution on Low-Cohesive Soil’s Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests
PublikacjaIn this study the effect of using a biopolymer soil stabilizer on soil stiffness characteristics was investigated. Chitosan is a bio-waste material that is obtained by chemical treatment of chitin (a chemical component of fungi or crustaceans’ shells). Using chitosan solution as a soil stabilizer is based on the assumption that the biopolymer forms temporary bonds with soil particles. What is important is that these bonds are biodegradable,...
-
Electrophoretic Deposition of Chitosan/Eudragit E 100/AgNPs Coatings for Controlled Release of Antibacterial Substance
PublikacjaThe development of bacterial infection of the tissues surrounding an implant is one of the leading causes of implant surgery failure. In order to prevent the deposition of bacteria on the implant surface and the formation of biofilm, coatings that exhibit antibacterial properties are manufactured. However, the problem is the controlled release of the therapeutic substance from the coating over the extended life of the implant [1],...
-
The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light
PublikacjaThis paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food‐packaging materials. Such materials were then exposed to the UVC light (254 nm) for...
-
Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations
PublikacjaChitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence...