Filters
total: 1828
filtered: 1436
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: RBF NEURAL NETWORKS
-
Exploiting Multi-Interface Networks: Connectivity and Cheapest Paths
PublicationRozważano zagadnienie minimalizacji energii w sieciach bezprzewodowych bez infrastruktury, w których niektóre węzły są wyposażone w więcej, niż jeden interfejs. W przyjętym modelu sieci podano nowe algorytmy przybliżone oraz wyniki dotyczące złożoności obliczeniowej dla dwóch problemów: aktywacji najtańszej spójnej podsieci spinającej oraz aktywacji ścieżki pomiędzy ustaloną parą węzłów.
-
An efficient approach to optimization of semi‐stable routing in multicommodity flow networks
Publication -
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublicationThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Rearrangeability in multicast Clos networks is NP-complete
PublicationPrzestrajalność w polach Closa z połączeniami jeden do jeden jest problemem wielomianowym. W pracy pokazano, że w polach z połączeniami jeden do wiele problem ten jest NP zupełny.Three-stage elos networks are commutation networks with circuit switching. So far, graph theory has been very useful tool for solving issues related to these networks with unicast connections. This is so because if elos network is represented as a bipartite...
-
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublicationThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
Controlling computer by lip gestures employing neural network
PublicationResults of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....
-
Cooperative Data Transmission in Wireless Vehicular Networks
PublicationThe paper presents issues related to the cooperative transmission in wireless vehicular networks. Cooperative transmission involves the use of mobile terminals as relay stations to improve the transmission quality, improve network performance and reduce energy consumption. The paper presents the methods used to implement cooperative transmission and the types of cooperative networks.
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublicationIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Optimization of Wireless Networks for Resilience to Adverse Weather Conditions
PublicationIn this chapter, we consider how adverse weather conditions such as rain or fog affect the performance of wireless networks, and how to optimize these networks so as to make them robust to these conditions. We first show how to analyze the weather conditions in order to make them useful for network optimization modelling. Using an example realistic network, we show how to optimize two types of wireless networks: free-space optical...
-
Topology recognition and leader election in colored networks
PublicationTopology recognition and leader election are fundamental tasks in distributed computing in networks. The first of them requires each node to find a labeled isomorphic copy of the network, while the result of the second one consists in a single node adopting the label 1 (leader), with all other nodes adopting the label 0 and learning a path to the leader. We consider both these problems in networks whose nodes are equipped with...
-
A Simple Neural Network for Collision Detection of Collaborative Robots
PublicationDue to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...
-
CRVG - a new model for wireless networks topology generation
PublicationThis paper presents a new model of wireless network topology generator. Its main advantage is the possibility of relatively sparse networks generation. Because no iteration is needed, the model can be used for massive generation of networks for testing. The topological properties of produced graphs place them in the class of scale free networks, resembling real ones.
-
The networking of the justice system as part of public court networks
PublicationThe goal of this paper is to look at the organizational structure of the justice system and provide the answer to the basic question of the possible network relations, their force, and imapct. As part od the paper, I have defined public inetrorganisational court network, dividing them into regulatory inter-organisational networks nad voluntary inetrorganisational networks. Emphasis has also been placed on the benefits and threats...
-
Statistical significance of displacements in heterogeneous control networks
PublicationThis paper proposes a modification of the classical process for evaluating the statistical significance of displacements in the case of heterogeneous (e.g. linear-angular) control networks established to deformation measurements and analysis. The basis for the proposed solution is the idea of local variance factors. The theoretical discussion was complemented with an example of its application on a simulated horizontal control...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA
PublicationIn this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...
-
A Bayesian regularization-backpropagation neural network model for peeling computations
PublicationA Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...
-
Trust Management Method for Wireless Sensor Networks
PublicationA Wireless Sensor Network (WSN) is a network of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data to the main location. The first wireless network that bore any real resemblance to a modern WSN is the Sound Surveillance System (SOSUS), developed by the United States Military in the 1950s to detect and track Soviet...
-
Application of wavelength division multiplexing in sensor networks
PublicationOver the past few years the need to acquire data on various parameters from a number of sensors grew. The need that led to the development of a network of sensors which enables simultaneous control and measurement in a wide range of applications. The aim of this article is to discuss a possibility of connecting a variety of sensors in a network that would utilize WDM technology. Wavelength Division Multiplexing is commonly used...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublicationA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Traffic Remapping Attacks in Ad Hoc Networks
PublicationAd hoc networks rely on the mutual cooperation of stations. As such, they are susceptible to selfish attacks that abuse network mechanisms. Class-based QoS provisioning mechanisms, such as the EDCA function of IEEE 802.11, are particularly prone to traffic remapping attacks, which may bring an attacker better QoS without exposing it to easy detection. Such attacks have been studied in wireless LANs, whereas their impact in multihop...
-
User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning
PublicationIn this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...
-
Intelligent turbogenerator controller based on artifical neural network
PublicationThe paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...
-
The impact of institutions on innovation networks: empirical evidence from Poland
PublicationInnovation networks may accelerate and improve the innovation process, while institutional pathologies may hamper it. This study employs the Kruskal-Wallis H test and regression analysis to determine if the relationship between institutions and innovation networks does exist among the investigated variables. The purpose of the study was to find out whether cooperation with special local institutions influences the innovative behaviour...
-
Traffic Modeling in IMS-based NGN Networks
PublicationIn the modern world the need for accurate and quickly delivered information is becoming more and more essential. In order to fulfill these requirements, next generation telecommunication networks should be fast introduced and correctly dimensioned. For this reason proper traffic models must be identified, which is the subject of this paper. In the paper standardization of IMS (IP Multimedia Subsystem) concept and IMS-based NGN...
-
Interdependence between Power Grids and Communication Networks: A Resilience Perspective
PublicationPower network resilience is increasingly dependent on communication networks. Besides traditional generation, power networks need to accommodate increasingly high penetration levels of dispersed micro generation, mostly based on renewable sources, and increasing and challenging demand, such as electric vehicles. At the same time the deployment of enabling technologies throughout the power grid makes available new demand resources...
-
A METHOD OF TRUST MANAGEMENT IN WIRELESS SENSOR NETWORKS
PublicationThe research problem considered in this paper is how to protect wireless sensor networks (WSN) against cyber-threats by applying trust management and how to strengthen network resilience to attacks targeting the trust management mechanism itself. A new method, called WSN Cooperative Trust Management Method (WCT2M), of distributed trust management in multi-layer wireless sensor networks is proposed and its performance is evaluated....
-
Neural network model of ship magnetic signature for different measurement depths
PublicationThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublicationIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
A Novel Multicast Architecture of Programmable Networks
PublicationIn the paper a multicast architecture for programmable networks based on separation of group management and network control tasks is proposed. Thanks to this separation, services which want to make use of multicast communications no longer have to implement low-level network functionalities and their operation is greatly simplified. Abstracting service’s view of the network into a fully connected cloud enables us to transparently...
-
Practical issues for the implementation of survivability and recovery techniques in optical networks
PublicationFailures in optical networks are inevitable. They may occur during work being done for the maintenance of other infrastructures, or on a larger scale as the result of an attack or large-scale disaster. As a result, service availability, an important aspect of Quality of Service (QoS), is often degraded. Appropriate fault recovery techniques are thus crucial to meet the requirements set by the Service Level Agreements (SLAs) between...
-
Eventual Convergence of the Reputation-Based Algorithm in IoT Sensor Networks
PublicationUncertainty in dense heterogeneous IoT sensor networks can be decreased by applying reputation-inspired algorithms, such as the EWMA (Exponentially Weighted Moving Average) algorithm, which is widely used in social networks. Despite its popularity, the eventual convergence of this algorithm for the purpose of IoT networks has not been widely studied, and results of simulations are often taken in lieu of the more rigorous proof....
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublicationA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Fundamentals of Communication Networks Resilience to Disasters and Massive Disruptions
PublicationCommunication networks are exposed to a variety of massive failure events following from activities of nature, weather-induced disruptions, technology-implied problems, and malicious human activities. In this chapter, we first highlight the characteristics of these scenarios and discuss example failure events reported during the last three decades. Next, we explain the concept of network resilience and present an overview of major...
-
The Neural Knowledge DNA Based Smart Internet of Things
PublicationABSTRACT The Internet of Things (IoT) has gained significant attention from industry as well as academia during the past decade. Smartness, however, remains a substantial challenge for IoT applications. Recent advances in networked sensor technologies, computing, and machine learning have made it possible for building new smart IoT applications. In this paper, we propose a novel approach: the Neural Knowledge DNA based Smart Internet...
-
Accuracy Investigations of Turbine Blading Neural Models Applied to Thermal and Flow Diagnostics
PublicationPossibility of replacing computional fluid dynamics simulations by a neural model for fluid flow and thermal diagnostics of steam turbines is investigated. Results of calculations of velocity magnitude of steam for 3D model of the stator of steam turbine is presented.
-
Grade of service determination methodology in IP networks with SIP protocol
PublicationAlthough Grade of Service is very important in VoIP providers evaluation, We wasn't able to find any paper regarding the topic of measuring GoS variables for IP networks utilizing SIP, which are defined like for PSTN/ISDN/GSM networks (post-selection delay, answering delay, release delay, or probability of end-to-end blocking). Due to the lack of research in this field, it was necessary to start from defining measures and cover...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublicationThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks
PublicationDominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...
-
Comparison of centralized and decentralized preemption in MPLS networks
PublicationPreemption is one of the crucial parts of the traffic engineering in MPLS networks. It enables allocation of high-priority paths even if the bandwidth on the preferred route is exhausted. This is achieved by removing previously allocated low-priority traffic, so as enough free bandwidth becomes available. The preemption can be performed either as a centralized or a decentralized process. In this article we discuss the differences...
-
A Review of Traffic Analysis Attacks and Countermeasures in Mobile Agents' Networks
PublicationFor traditional, message-based communication, traffic analysis has been already studied for over three decades and during that time various attacks have been recognised. As far as mobile agents’ networks are concerned only a few, specific-scope studies have been conducted. This leaves a gap that needs to be addressed as nowadays, in the era of Big Data, the Internet of Things, Smart Infrastructures and growing concerns for privacy,...
-
Network lifetime maximization in wireless mesh networks for machine-to-machine communication
Publication -
Routing decisions independent of queuing delays in broadband leo networks
PublicationThis paper presents an analysis of queuing and propagation delays of Inter-Satellite Links (ISLs) in broadband Low-Earth Orbit (LEO) satellite networks. It is shown that queuing delays are negligible in all reasonable working conditions of the broadband ISL network. This fact makes it possible to simplify the routing protocols in such networks and permits using already known multi-commodity flow solutions for routing. The performance...