displaying 1000 best results Help
Search results for: FIBER-METAL COMPOSITES
-
New insights on lithium storage in silicon oxycarbide/carbon composites: Impact of microstructure on electrochemical properties
PublicationIn this work, we study the impact of the preceramic precursor vinyltriethoxysilane (VTES) on the electrochemical performance of silicon oxycarbide (SiOC) glass/graphite composites. We apply an innovative approach based on high-power ultrasounds in order to obtain highly homogenous composites with a uniform distribution of small graphitic flakes. This procedure enhances gelation and drying of VTES-based preceramic polymer/graphite...
-
Influence of selected submicron inorganic particles on mechanical and thermo-mechanical properties of unsaturated polyester/glass composites
PublicationIn this paper, the influence of different submicron-scaled particles (zinc oxide, titanium dioxide, or silica) on mechanical and thermo-mechanical properties of unsaturated polyester matrix composites reinforced with glass fabric was investigated. Surface morphology of obtained composites was also examined. At first inorganic particles were mechanically dispersed into unsaturated polyester resin system as per the calculated weight...
-
Structures of diamond tool composites
PublicationPresented are structures and examples of applications of diamond tool composites. They are widely used as cutting tools, bonded abrasive tools and dressing tools.
-
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites
PublicationAramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior...
-
Study on Dry Sliding Wear and Friction Behaviour of Al7068/Si3N4/BN Hybrid Composites
PublicationHybrid aluminium metal matrix composites have the potential to replace single reinforced aluminium metal matrix composites due to improved properties. Moreover, tribological performance is critical for these composites, as they have extensive application areas, such as the automotive, aerospace, marine and defence industries. The present work aims to establish the tribological characteristics of Al7068/Si3N4/BN hybrid metal matrix...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublicationBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Selected biotrends in development of epoxy resins and their composites
PublicationEpoxy resins and their fibre or particulate composites are widely used in various industries, including building, naval, aircraft, automotive and aerospace. Modern polymer science and technology focus on the development of green polymers and composites. There are two major areas of interest in the case of epoxy resins: the development of bio-based resins and the production of composites with natural fibers. One of the most interesting...
-
Application of titanium dioxide thin films in fiber optic sensors
PublicationThe advance in the nanotechnology and fabrication of micro- and nanostructures has significant impact on development of new optical sensors. Presented study focuses on the applications of the titanium dioxide (TiO2) thin films in fiber optic sensors. The concept of a sensing fiber optic interferometer integrating TiO2 thin film is presented. The cavity of this interferometer is delimited by a 80 nm film fabricated on the end-face...
-
Piotr Jasiński prof. dr hab. inż.
PeoplePiotr Jasinski obtained MSc in electronics in 1992 from the Gdansk University of Technology (GUT), Poland. Working at GUT, he received PhD in 2000 and DSc in 2009. Between 2001 and 2004 Post Doctoral Fellow at Missouri University of Science and Technology, while between 2008 and 2010 an Assistant Research Professor. Currently is an Associate Professor at Gdansk University of Technology working in the field of electronics, biomedical...
-
Microscale diamond protection for a ZnO coated fiber optic sensor
PublicationFiber optic sensors are widely used in environmental, biological and chemical sensing. Due to the demanding environmental conditions in which they can be used, there is a risk of damaging the sensor measurement head placed in the measuring field. Sensors using nanolayers deposited upon the fiber structure are particularly vulnerable to damage. A thin film placed on the surface of the fiber end-face can be prone to mechanical damage...
-
Enhanced interfacial and mechanical performance of styrene-butadiene rubber/silica composites compatibilized by soybean oil derived silanized plasticization
PublicationSilanized plasticizer (SP) was chemically derived and synthesized from soybean oil (SBO) co-vulcanized with bis-(3-(triethoxysilyl)-propyl) tetrasulfide (TESPT) by using the sulfur-accelerated curing system. SP extended styrene-butadiene rubber (SBR)/silica composites have been studied for their improved filler dispersion through coupling interaction at the SBR/silica interface. The effect of SP on cross-link density, thermal,...
-
Polymer Materials for U-Shaped Optic Fiber Sensors: A Review
PublicationFiber optic sensors have gained popularity over the last few decades. This is due to their numerous advantages, such as good metrological parameters, biocompatibility and resistance to magnetic and electric fields and environmental pollution. However, those built from glass fiber have one main disadvantage—they are fragile, meaning they can be easily damaged, even by the presence of vibration. Due to the great progress made by...
-
Temperature Sensors Based on Polymer Fiber Optic Interferometer
PublicationTemperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in...
-
Fiber optic displacement sensor with signal analysis in spectral domain
PublicationIn this paper, a study of a low-coherence fiber optic displacement sensor is presented. The sensor consisted of a broadband source whose central wavelength was either at 1310 nm or 1550 nm, a sensing Fabry-Pérot interferometer operating in reflective mode and an optical spectrum analyzer acting as the detection setup. All these components were connected by a single-mode fiber coupler. Metrological parameters of the sensor were...
-
MANDARIN PEEL AS AN AUSPICIOUS FUNCTIONAL FILLER FOR POLYMER COMPOSITES
PublicationThis work describes the application of mandarin peel (MP) as a waste filler for high-density polyethylene (HDPE) composites. The main goal was to investigate the impact of the filler's essential oils, which include multiple terpenes and terpenoids, on the processing, physicochemical, mechanical, and thermal properties of the composites as a function of different filler content (1 – 10 wt%), as well as its effect on the color and...
-
COMPOSITES SCIENCE AND TECHNOLOGY
Journals -
Journal of Composites Science
Journals -
WOOD AND FIBER SCIENCE
Journals -
FIBER AND INTEGRATED OPTICS
Journals -
Advanced Fiber Materials
Journals -
Nanocrystalline diamond sheets as protective coatings for fiber-optic measurement head
PublicationFiber-optic sensors find numerous applications in science and industry, but their full potential is limited because of the risk of damaging the measurement head, in particular, due to the vulnerability of unprotected tips of the fiber to mechanical damage and aggressive chemical agents. In this paper, we report the first use of a new nanocrystalline diamond structure in a fiber-optic measurement head as a protective coating of...
-
Impact damage in SiO2 nanoparticle enhanced epoxy – Carbon fibre composites
PublicationLow velocity impact behaviour of nano-SiO2 enhanced carbon fibre/epoxy composites for naval applications is reported. Epoxy resin matrix was enhanced by 1- 8 wt% SiO2 nanoparticles, based on industrial surface-modified nanosilica. Impact parameters: force, deformation, energy, damage size were recorded. The most pronounced effect was damage size decrease; e.g. ∼28% recorded by infrared thermography and X-ray computed radiography...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
The degradation of metal implants
PublicationThe presence of metal implants in the human body causes some dangers, which result from introducing another object into organism. There may occur a biocorrosion, which causes different modifications of implant surface.
-
Metal-Organic Framework (MOF)/Epoxy Coatings: A Review
PublicationEpoxy coatings are developing fast in order to meet the requirements of advanced materials and systems. Progress in nanomaterial science and technology has opened a new era of engineering for tailoring the bulk and surface properties of organic coatings, e.g., adhesion to the substrate, anti-corrosion, mechanical, flame-retardant, and self-healing characteristics. Metal-organic frameworks (MOFs), a subclass of coordinative polymers...
-
Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization
PublicationPolymer recycling techniques experience a maturity period of design and application. Rubbers comprise a high proportion of polymer wastes, highly flammable and impossible to re-melt. Polymer composites based on ground tire rubber (GTR) and ethylene-vinyl acetate copolymer (EVA) containing carbon black (CB) (1–50 phr), with variable EVA/GTR weight composition (10/90, 25/75, 50/50, 75/25 and 90/10), and processing temperature (Low:...
-
Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development– a review
PublicationGround tire rubber (GTR) has been used as a sustainable low-cost modifier in various composites. However, due to the hydrophobic nature of GTR, it is in compatible with most matrices and results in deterioration in both mechanical and physical properties of composites. This necessitates pre-modification of the powdered rubber to improve the interfacial bonding at the rubber-matric interface. The most common GTR modification research...
-
Piezoresistive properties of cement composites with expanded graphite
Publication -
Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement
PublicationBrewers' spent grain (BSG) and ground tire rubber (GTR) were applied as low-cost hybrid reinforcement natural rubber (NR). The impact of BSG/GTR ratio (in range: 100/0, 75/25, 50/50, 25/75 and 0/100 phr) on processing and performance properties of highly filled natural rubber composites was evaluated by oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy,...
-
PU Polymers, Their Composites, and Nanocomposites: State of the Art and New Challenges
PublicationThe chapter is a review of the polyurethane(PU)-based composites and nanocomposites. The chapter details different components in the manufacturing of PU polymers, composites, and nanocomposites. The different types of glycols, isocyanates, and catalysts that are used for the synthesis of different polyurethanes are discussed. The applications and specialties of polyurethane composites and nanocomposites are also elaborated on.
-
Recent advances in compatibilization strategies of wood-polymer composites by isocyanates
PublicationWood-polymer composites technologies are gaining more and more attention in the scientific community, positively affecting the increase in their industrial applications, for example, automotive, building, 3D printing, etc. Many research works are focused on the improvement in matrix–lignocellulosic filler interactions to produce highly filled composites with satisfying performance properties. In this field of research, using isocyanates...
-
Phosphoroorganic Metal Complexes in Therapeutics
PublicationThe present mini-review highlights recent developments on antitumor activity of metal-based therapeutics which have been a subject of researches for the last few decades. In 1965, Rosenberg found that during an electrolysis on platinum electrodes a complex of Pt is generated which inhibited to a great extent a binary fission in Escherichia coli bacteria. This discovery started a new chapter in medicinal chemistry and the interesting...
-
Composites Research
Journals -
Elastomers and Composites
Journals -
The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites
PublicationThe rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally...
-
The investigation of polyester composites filled by modified bentonite
PublicationPraca dotyczy zagospodarowania odpadów poliestrowo-szklanych przez wytworzenie kompozytów z ich użyciem oraz żywicy poliestrowej, mączki dolomitowej i nanonapełniacza. Wykazano, ze dodatek 2% nanonapełniacza do do kompozytów poliestrowych zawierających 15% masowych odpadów pozwala na uzyskanie materiału wykazującego korzystne właściwości wytrzymałościowe. Proponowany sposób modyfikacji kompozytów poliestrowych jest nowym rozwiązaniem...
-
ZnO coated fiber optic microsphere sensor for the enhanced refractive index sensing
PublicationOptical fiber-based sensors are expected to become key components in the control of industrial processes,and the tuning and the enhancement of their sensing properties are crucial for the further developmentof this technology. Atomic Layer Deposition (ALD), a vapor phase technique allowing for the deposition ofconformal thin films, is particularly suited for the deposition of controllable thin films on challenging sub-strates....
-
Magnetically sensitive fiber probe with nitrogen-vacancy center nanodiamonds integrated in a suspended core
PublicationEfficient collection of photoluminescence arising from spin dynamics of nitrogen vacancy (NV) centers in diamond is important for practical applications involving precise magnetic field or temperature mapping. These goals may be realized by the integration of nanodiamond particles with optical fibers and volumetric doping of the particles alongside the fiber core. That approach combines the advantages of robust axial fixation of...
-
A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response
PublicationA novel sandwich composite footbridge is presented in the paper, as an example of practical application of laminated composites in civil engineering. The in situ static load tests of the footbridge before its acceptation for exploitation are shown and discussed. The results are compared with the corresponding ones from a numerical equivalent single layer model of the sandwich structure created within the framework of finite element...
-
Optical properties of thin TiO2 film deposited on the fiber optic sensor head
PublicationThe presented study was focused on investigation of the titanium dioxide (TiO2) thin film deposited on the fiber tip. The intention of this investigation was using TiO2 film in the construction of the optical fiber sensor head. In the demonstrated construction TiO2 thin layer was deposited on the tip of a commonly used telecommunication single mode optical fiber (SMF-28) by means of the Atomic Layer Deposition (ALD). Thickness...
-
Structure and thermoelectric properties of bismuth telluride—Carbon composites
PublicationCarbon nanotubes and amorphous carbon have been introduced into a bismuth telluride matrix (0.15 and 0.30 wt.% ratio) to investigate the influence of the carbon on the composite’s thermoelectric properties. Composites with well-dispersed additives have been obtained by sonication and ball-milling methodology. Carbon nanotubes and an amorphous carbon addition led to a decrease in electric conductivity from 1120 S/cm to 77 S/cm....
-
Superconductivity in Metal-Rich Chalcogenide Ta2Se
PublicationThe metal–metal bond in metal-rich chalcogenide is known to exhibit various structures and interesting physical properties. Ta2Se can be obtained by both arc-melting and solid-state pellet methods. Ta2Se crystallizes a layered tetragonal structure with space group P4/nmm (No. 129; Pearson symbol tP6). Each unit cell consists of four layers of body-centered close-packing Ta atoms sandwiched between two square nets of Se atoms, forming...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Temperature Fiber-Optic Sensor with ZnO ALD Coating
PublicationThis study presents a microsphere-based fiber-optic sensor with a ZnO Atomic Layer Deposition (ALD) coating thickness of 100 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range of 100 °C to 300 °C, with a 10 °C step. An interferometric signal is used to control whether the microstructure is whole. Spectrum shift of a reflected signal is used to ascertain changes in...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
Low-Coherence Interferometric Fiber-Optic Sensors with Potential Applications as Biosensors
PublicationFiber-optic Fabry-Pérot interferometers (FPI) can be applied as optical sensors, and excellent measurement sensitivity can be obtained by fine-tuning the interferometer design. In this work, we evaluate the ability of selected dielectric thin films to optimize the reflectivity of the Fabry-Pérot cavity. The spectral reflectance and transmittance of dielectric films made of titanium dioxide (TiO2) and aluminum oxide (Al2O3) with...
-
MXene-based composites for capacitive deionization – The advantages, progress, and their role in desalination - A review
PublicationMXenes, a novel large family of 2D transition metal carbides, carbonitrides and nitrides are currently a “hot topic” in science due to their several fascinating physical and chemical properties. It follows from a rich diversity of their elemental compositions and chemical functionalities. MXenes can form composites with many substances, including polymers or metal oxides, which allows to effective “tune” MXene characteristics to...
-
Fiber-optic Fabry-Pérot sensors – modeling versus measurements results
PublicationThis paper describes how parameters of investigated substances and the fiber-optic Fabry-Pérot sensing interferometer affect the spectrum of the optical radiation at the output of the sensor. First, the modeling of the operation of the sensing interferometer was conducted. Most important parameters and effects that were taken into account are: dependences of the refractive indices of the core and the cladding, as well the mode...
-
Mechanical, thermo-mechanical properties of epoxy/glass composites with submicron particles
PublicationIn this research the influence of submicron zinc oxide and silicon dioxide particles on mechanical, thermo-mechanical properties of epoxy matrix composites reinforced with glass fibres was investigated. Composites were fabricated using hand lay-up method. Materials contained 39-41 wt.% of glass fibres. The bending tests, dynamic mechanical analysis and tribological tests were performed on each group of composites and also for...
-
Carboxy derivative of dioxydiphenylpropane diglycydyl ether monomethacrylate as an addtive for composites
PublicationThe modifier of composites was used in the presence of polyetylene polyamine. Physico-mechanical properties and chemical stability of coatings thus obtained were analyzed.