Search results for: NANOPOROUS MATERIAL,BATTERIES,ANODE MATERIALS
-
SEM micrographs of V2O5 nanorods as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the scanning electron microscopy (SEM) micrographs of V2O5 nanorods as cathode materials before and after the galvanostatic charge/discharge curves.
-
Rate performance of the V2O5 nanocrystals as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the galvanostatic charge/discharge curves of the V2O5 nanocrystals obtained by the sol-gel method. The battery tests of the samples were performed using the Atlas-Sollich 0961 (Atlas-Sollich, Poland) with different current densities in the voltage range between 2.0 V and 4.0 V vs. Li/Li+. Here 1C is 294 mAh g-1.
-
SEM micrographs of V2O5 nanocrystals as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the scanning electron microscopy (SEM) micrographs of V2O5 nanocrystals as cathode materials before and after the galvanostatic charge/discharge curves.
-
Rate performance of the V2O5 nanorods as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the galvanostatic charge/discharge curves of the V2O5 nanorods obtained by the sol-gel method. The battery tests of the samples were performed using the Atlas-Sollich 0961 (Atlas-Sollich, Poland) with different current densities in the voltage range between 2.0 V and 4.0 V vs. Li/Li+. Here 1C is 294 mAh g-1.
-
A- and B-site doping effect on physicochemical properties of Sr2−xBaxMMoO6 (M = Mg, Mn, Fe) double perovskites — candidate anode materials for SOFCs
Publication -
Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs
Publication -
Recycled brick aggregates in one-part alkali-activated materials: Impact on 3D printing performance and material properties
Publication -
Rate performance of (NH4)2V10O25·8H2O as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the galvanostatic charge/discharge curves of the ammonium vanadate nanostructures obtained by the hydrothermal method under an initial pressure of 50 bar ((NH4)2V10O25·8H2O). The battery tests of the samples were performed using the ATLAS 0961 MBI multichannel battery testing system with different current densities in the voltage...
-
Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins
PublicationPhysical properties and X-ray tomography images of five different granular materials: glass bead, glass grit, short grain white rice, sorghum and clay granules (Seramis) are investigated to select the most promising materials for numerical simulations and time-lapse X-ray tomography imaging. The examined materials represent granular materials of non-biological origin (glass bead, glass grit and Seramis) and granular plant materials...
-
Karol Grębowski dr inż.
PeopleKarol Grębowski (M.Sc.) works as an assistant at the Department of Technical Fundamentals of Architecture Design of the Faculty of Architecture at Gdansk University of Technology. His scientific research deals with dynamic phenomena occurring during the vibration of structures, bridges, and studies the design methodology of the elements forming passive protection system of the vehicles degraded by struck or explosion in the context...
-
Rate performance of mixture (NH4)2V6O16 and (NH4)2V10O25·8H2O as cathode material in Li-ion batteries
Open Research DataThe DataSet contains the galvanostatic charge/discharge curves of the ammonium vanadate nanostructures obtained by the hydrothermal method without initial pressure (mixture (NH4)2V6O16 and (NH4)2V10O25·8H2O). The battery tests of the samples were performed using the ATLAS 0961 MBI multichannel battery testing system with different current densities...
-
Agnieszka Witkowska dr hab. inż.
People -
Monika Wilamowska-Zawłocka dr hab. inż.
PeopleDr Monika WILAMOWSKA-ZAWŁOCKA obtained her PhD in Chemistry in 2011 at Faculty of Chemistry, Gdańsk University of Technology. She then was a post-doctoral fellow at Technische Universität Darmstadt, Germany. Since 2013 she has worked at Gdańsk University of Technology, since 2019 as an Associate Professor. Her research interests include composite materials for energy storage devices, especially for lithium-ion and sodium-ion batteries,...
-
The XRD diffraction patterns of as-prepared (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials synthesized via the solid state reaction method
Open Research DataThe (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials were synthesized via the solid state reaction method and examined as a potential anode material. First, the mixed oxide reagents were pressed into pellets and calcined at 1200 °C for 12 hours to decompose most of the organic compounds. The resulting calcined pellet was ground...
-
9 - Solid oxide fuel and electrolysis cells
PublicationIn this chapter, the fundamental reactions, the geometrical designs, the material requirements, and the status of SOFCs and SOECs are presented. In the following seven chapters, the most important components of an SOC are described and the chapter ends with a summary and outlook. The described components are: (i) oxygen-ion conductors (electrolyte), (ii) anode materials for SOFCs (cathode in SOEC mode), (iii) cathode materials...
-
Janusz Kozak prof. dr hab. inż.
PeopleJanusz KOZAK Born 04.07.1953 Puck, Poland Intermediate school” Technikum Budowy Okrętów „Conradinum” Gdansk, 1973. Graduated on Faculty of Shipbuilding of Gdańsk University of Technology, Poland, 1978. Employed: From 1978 - Gdynia Shipyard 1978 as designer, from 1980 as a specialist in Chair of Technology in Faculty of Shipbuilding of Gdańsk University of Technology, 1993 as assistant, PhD (1993), “Method for assessment...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
n/d n/d
ProjectsProject realized in Faculty of Chemistry according to Homing Plus/2012-6/16 agreement from 2013-05-22
-
N-doped carbon materials as electrodes for highly stable supercapacitors
PublicationThis article reports a strategy to use nitrogen-doped carbon materials as electrodes for supercapacitors. Depending on the carbon precursor, the porous structure is changed with specific surface area reached up to 2270 m2 g−1. The capacitance of carbon materials used as electrodes is related strictly to pore size. The microstructure and nitrogen functionalities enable a high capacitance (327 F g−1) and cycle durability. The nanoporous...
-
The XRD diffraction patterns of (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials after reduction at 900 deg.C in hydrogen
Open Research DataThe (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials were synthesized via the solid state reaction method and examined as a potential anode material. First, the mixed oxide reagents were pressed into pellets and calcined at 1200 °C for 12 hours to decompose most of the organic compounds. The resulting calcined pellet was ground...
-
The XRD diffraction patterns of (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials after reduction at 1000 deg.C in hydrogen
Open Research DataThe (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials were synthesized via the solid state reaction method and examined as a potential anode material. First, the mixed oxide reagents were pressed into pellets and calcined at 1200 °C for 12 hours to decompose most of the organic compounds. The resulting calcined pellet was ground...
-
The XRD diffraction patterns of (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials after reduction at 1100 deg.C in hydrogen
Open Research DataThe (La0.3Sr0.6Ce0.1)0.9Me0.1Ti0.9O3-δ (Me= Co, Cu, Fe, Mn, Ni) materials were synthesized via the solid state reaction method and examined as a potential anode material. First, the mixed oxide reagents were pressed into pellets and calcined at 1200 °C for 12 hours to decompose most of the organic compounds. The resulting calcined pellet was ground...
-
Badania stabilności chemicznej kompozytowego elektrolitu 3-YSZ-Al2O3 w stosunku do materiałów elektrodowych do zastosowania w średniotemperaturowych ogniwach paliwowych
PublicationJednym z podstawowych wymogów stawianych mate- riałom na elektrolity do średniotemperaturowych ogniw paliwowych IT-SOFC (ang. intermediate-temperature solid oxide fuel cells) jest ich kompatybilność chemiczna z elektrodami w temperaturach zarówno eksploatacji, jak i wytwarzania ogniw. W celu sprawdzenia, czy badany w pracy kompozytowy elektrolit o osnowie z częściowo stabilizowanego ditlenku cyrkonu i z wtrąceniami tlenku glinu...
-
Porous carbon derived from rice husks as sustainable bioresources: insights into the role of micro-/mesoporous hierarchy in hosting active species for lithium–sulphur batteries
PublicationThe exploration of natural resources as sustainable precursors affords a family of green materials. Exploring highly abundant and available biowaste precursors remaining from food processing throughout a scalable and cost-effective material synthesis path is highly important especially for new materials discovery in emerging energy storage technologies such as lithium–sulphur (Li–S) batteries. Herein, we have produced a series...
-
Synthesis and characterization of MoS2-carbon based materials for enhanced energy storage applications
PublicationThe article delves into the synthesis and characterization of MoS2-carbon-based materials, holding promise for applications in supercapacitors and ion batteries. The synthesis process entails the preparation of MoS2 and its carbon hybrids through exfoliation, hydrothermal treatment, and subsequent pyrolysis. Various analytical techniques were employed to comprehensively examine the structural, compositional, and morphological properties...
-
Status report on high temperature fuel cells in Poland – Recent advances and achievements
PublicationThe paper presents recent advances in Poland in the field of high temperature fuel cells. The achievements in the materials development, manufacturing of advanced cells, new fabrication techniques, modified electrodes and electrolytes and applications are presented. The work of the Polish teams active in the field of solid oxide fuel cells (SOFC) and molten carbonate fuel cell (MCFC) is presented and discussed. The review is oriented...
-
Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas
PublicationThe nanocrystalline compounds of Co and Cu co-doped ceria (with up to 20 mol.% of dopants) were fabricated by the reverse microemulsion synthesis method. They were deposited in a form of layers on the surface of SOFC anode in an aim to act as electrochemically active materials for biogas reforming process. Fourier Transformed Infrared Spectroscopy was used to analyze a composition of outlet gases simultaneously with the tests of...
-
Properties of LiMnBO3 glasses and nanostructured glass-ceramics
PublicationPolycrystalline LiMnBO3 is a promising cathode material for Li-ion batteries. In this work, we investigated the thermal, structural and electrical properties of glassy and nanocrystallized materials having the same chemical composition. The original glass was obtained via a standard melt-quenching method. SEM and 7Li solid-state NMR indicate that it contains a mixture of two distinct glassy phases. The results suggest that the...
-
Strength of Materials II,Lectures,DAPE,spring 21-22 (PG_00050281)
e-Learning CoursesThe aim of the subject is to acquire knowledge related to the strength of materials II (mechanics of material, part 2)
-
Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming
PublicationSolid oxide fuel cells (SOFCs) are one of the most promising energy conversion devices due to their high efficiency, low pollution and fuel flexibility. Unfortunately, when hydrocarbons are used as a fuel, for example in the form of a biogas, solid carbon can deposit on the anode surface. This process leads to the degradation of the fuel cell performance. A possible solution to this problem is to apply an additional catalytic material,...
-
Enhanced Electrochemical Performance of MnCo1.5Fe0.5O4Spinel for Oxygen Evolution Reaction through Heat Treatment
PublicationMnCo1.5Fe0.5O4 spinel oxide was synthesized using the sol−gel technique, followed by heat treatment at various temperatures (400, 600, 800, and 1000 °C). The prepared materials were examined as anode electrocatalysts for watersplitting systems in alkaline environments. Solid-state characterization methods, such as powder X-ray diffraction and X-ray absorption spectroscopy (XAS), were used to analyze the materials’ crystallographic...
-
Ceramic composites for single-layer fuel cells
PublicationComposite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode...
-
Obrony prac doktorskich na Wydziale Chemicznym
EventsDn. 04.10.2022 r. o godz. 13.15 w Audytorium 1.4 Wydziału Chemicznego PG (budynek nr 5) odbędzie się w trybie hybrydowym publiczna obrona pracy doktorskiej mgr. inż. Dominika Knozowskiego.
-
Muhammad Danish Ali MSc.
PeopleMuhammad Danish Ali is a dedicated researcher ( Google scholar h index 12) specializing in energy Storage Materials at Silesian University of Technology in Katowice, Poland. He is completing his PhD under the supervision of Prof. Anna Starczewska from Silesian University of Technology, Katowice, Poland. With a solid academic foundation in material science from the University of the Punjab, Lahore, he has focused his research on...
-
Raman spectra of PCMCA-X (potassium citrate derived porous carbon materials obtained at various temperatures of carbonization)
Open Research DataThese data contain Raman spectra of PCMCA-700 (potassium citrate derived porous carbon materials obtained at 700°C ), PCMCA-800 (potassium citrate derived porous carbon materials obtained at 800°C ), PCMCA-900 (potassium citrate derived porous carbon materials obtained at 900°C ). The D peak at 1340 cm−1 and the G peak at 1592 cm−1 can be seen in all...
-
Recovery of Pure Lead-Tin Alloy from Recycling Spent Lead-Acid Batteries
PublicationSpent lead–acid batteries have become the primary raw material for global lead production. In the current lead refining process, the tin oxidizes to slag, making its recovery problematic and expensive. This paper aims to present an innovative method for the fire refining of lead, which enables the retention of tin contained in lead from recycled lead–acid batteries. The proposed method uses aluminium scrap to remove impurities...
-
Investigation of praseodymium and samarium co-doped ceria as an anode catalyst for DIR-SOFC fueled by biogas
PublicationThe Pr and Sm co-doped ceria (with up to 20 mol.% of dopants) compounds were examined as catalytic layers on the surface of SOFC anode directly fed by biogas to increase a lifetime and the efficiency of commercially available DIR-SOFC without the usage of an external reformer. The XRD, SEM and EDX methods were used to investigate the structural properties and the composition of fabricated materials. Furthermore, the electrical...
-
Enhanced visible light-activated gas sensing properties of nanoporous copper oxide thin films
PublicationMetal oxide gas sensors are popular chemoresistive sensors. They are used for numerous tasks, including environmental and safety monitoring. Some gas-sensing materials exhibit photo-induced properties that can be utilized for enhanced gas detection by modifying the sensor selectivity and sensitivity when illuminated by light. Here, we present the gas sensing characteristics of highly nanoporous Cu2O thin films towards both electrophilic...
-
3D porous graphene-based structures- synthesis and applications
PublicationPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study
PublicationHere, we report on an electrochemical impedance study of silica of organic origin as an active electrode material. The electrode material obtained from carbonized marine biomass containing nanoporous diatoms has been characterised by means of XRD, IR, SEM and EIS. Dif- ferent kinds of crystallographic phases of silica as a result of thermal treatment have been found. The electrode is electrochemically stable during subsequent cyclic...
-
Jan Suchorzewski dr inż.
PeopleJan Suchorzewski MSc, born 13.03.1990 in Gdańsk, graduated in civil engineering with specialization in engineering structures at Gdańsk University of Technology in 2014, at thye same time begun work at GUT as PhD student working in a project "Analysis of coupled deterministic-statistic size effect in quasi-brittle materials" performing experimental investigation of shear strength of RC-beams and numerical calculations of concrete...
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublicationTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
-
Physicochemical studies (Raman) of multiple times processed poly(lactic acid)-carbon black composites
Open Research DataThis dataset contains Raman spectroscopy studies of commercially available ProtoPasta 3D printable filament, composed of poly-lactic acid (PLA) and conductive carbon black (CB) filler. The aim of the study is to observe structural differences and applied properties changes under multiple reprocessing of the composite material at different temperatures...
-
Nanoporous TiO2 electrode grown by laser ablation of titanium in air at atmospheric pressure and room temperature
PublicationRecently, fabrication of the nanoporous TiO2 photoelectrode on metal foils by means of sputtering of the Ti film on preheatedmetal substrate followed by the TiO2 deposition (doctor blade technique) and sintering represents the frequently applied technique. This is despite the relatively complicated procedure and number of parameters to be controlled in order to fabricate films of required properties. In this work an approach is...
-
Valence state of Manganium in a MnCoO ceramics
Open Research DataManganium -cobalt based ceramics materials were produced by solid state reaction and sintred in a furnance in air atmosphere for 20h. Annealing temperature was 600 Celsius degree. For investigations a series of samples, with a various composition was chosen: MnCoO, Mn, Co2O and Mn2CoO. In order to determine valence states of the Mn, X-Ray photoemission...
-
Imaging of ferroelectric properties of sinter by means of Piezoresponse Force Microscopy
Open Research DataFerroelectricity is a property of certain materials [1], characterized by a spontaneous electrical polarization that can be reversed by applying an external electric field. Ferroelectric properties can be used to make capacitors with adjustable capacity. The permeability of ferroelectrics is not only regulated, but usually also very high, especially...
-
A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics
PublicationIn recent years, portable and wearable personal electronic devices have rapidly developed with increasing mass production and rising energy consumption, creating an energy crisis. Using batteries and supercapacitors with limited lifespans and environmental hazards drives the need to find new, environmentally friendly, and renewable sources. One idea is to harness the energy of human motion and convert it into electrical energy...
-
Broadband dielectric spectroscopy studies of multiple times processed poly(lactic acid)-carbon black composites
Open Research DataThis dataset contains broadband dielectric spectroscopy studies of commercially available ProtoPasta 3D printable filament, composed of poly-lactic acid (PLA) and conductive carbon black (CB) filler. The aim of the study is to observe structural differences and applied properties changes under multiple reprocessing of the composite material at different...
-
Topography studies of multiple times processed poly(lactic acid)-carbon black composites
Open Research DataThis dataset contains topography studies with scanning electron microscope of commercially available ProtoPasta 3D printable filament, composed of poly-lactic acid (PLA) and conductive carbon black (CB) filler. The aim of the study is to observe structural differences and applied properties changes under multiple reprocessing of the composite material...
-
Electrochemical analyses of multiple times processed poly(lactic acid)-carbon black composites
Open Research DataThis dataset contains cyclic voltammetry studies of commercially available ProtoPasta 3D printable filament, composed of poly-lactic acid (PLA) and conductive carbon black (CB) filler. The aim of the study is to observe structural differences and applied properties changes under multiple reprocessing of the composite material at different temperatures...