Filters
total: 508
Search results for: OXIDE REDUCTION
-
Enhanced electrochemical performance of partially amorphous La0.6Sr0.4CoO3-δ oxygen electrode materials for low-temperature solid oxide cells operating at 400 °C
PublicationThis work evaluates partially amorphous La0.6Sr0.4CoO3-δ (LSC) as a potential oxygen electrode for lowtemperature solid oxide cells. LSC was deposited using the spin-coating technique onto Ce0.8Gd0.2O2-δ (CGO) substrates. The optimal oxygen electrode thickness was determined as 500 nm. The electrochemical impedance spectroscopy (EIS) study showed a significant improvement in oxygen reduction/oxidation reaction kinetics when annealing...
-
Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system
PublicationNitrous oxide (N2O) emitted from biological nutrient removal activated sludge systems contributes significantly to the total carbon footprint of modern wastewater treatment plants. In the present study, N2O production and emissions were experimentally determined in a large-scale plant (220,000 PE) employing combined nitrogen (N) and phosphorus (P) removal. As a modelling tool, the Activated Sludge Model 2d (ASM2d) was extended...
-
Hydrogen evolution reaction catalyzed by Co-based metal-organic frameworks and their derivatives
PublicationIn this study, Co-bearing Metal-Organic Frameworks (MOFs) are grown via a facile solvothermal process on the surface of two kinds of conductive substrates – titanium dioxide nanotubes (TiO2NT) and fluorine-doped tin oxide (FTO) glass and tested as electrodes in the electrochemical hydrogen evolution reaction (HER). The materials derived from three organic linkers - terephthalic acid (Co-BDC), 2-aminoterephthalic acid (Co-BDCNH2),...
-
Preparation of MnCo2O4 and Mn1.7CuFe0.3O4 single-layer, and novel MnCo2O4/ Mn1.7CuFe0.3O4 dual-layer spinel protective coatings on complex-shaped metallic interconnects by EPD method
PublicationCeramic protective coatings applied to metallic interconnects play a vital role in solid oxide cells (SOCs) preventing interconnect degradation. In this study, uniform, dense, and crack-free single-layer coatings of MnCo2O4, Mn1.7CuFe0.3O4, and dual-layer coatings of MnCo2O4/ Mn1.7CuFe0.3O4 spinel are deposited onto complex-shaped metallic interconnect using electrophoretic deposition (EPD) method. The porosity of sintered MnCo2O4...
-
Mono- and bimetallic (Pt/Cu) titanium(IV) oxide core–shell photocatalysts with UV/Vis light activity and magnetic separability
PublicationTitanium(IV) oxide is one of the most widely investigated photocatalysts. However, separation of nano-sized particulate titania might result in profitless technologies for commercial applications. Additionally, bare titania is almost inactive under the Vis range of solar spectrum due to its wide bandgap. Therefore, the present study aims to prepare novel coreinterlayer- shell TiO2 magnetic photocatalysts modified with metal nanoparticles...
-
Characteristics of LaCo 0.4 Ni 0.6-x Cu x O 3-δ ceramics as a cathode material for intermediate-temperature solid oxide fuel cells
PublicationIn this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x ≤ 0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation...
-
Forming Ni-Fe and Co-Fe Bimetallic Structures on SrTiO3-Based SOFC Anode Candidates
PublicationThe aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method and then infiltrated with an iron nitrate solution. The reduction process in dry H2 forced the topotactic ion exchange exsolution, leading to the formation of...
-
Prime-Boost Vaccination with Toxoplasma Lysate Antigen, but Not with a Mixture of Recombinant Protein Antigens, Leads to Reduction of Brain Cyst Formation in BALB/c Mice
PublicationIntroduction Infection with the ubiquitous parasite Toxoplasma gondii is a threat for immunocompro- mised patients and pregnant women and effective immune-prophylaxis is still lacking. Methods Here we tested a mixture of recombinant T . gondii antigens expressed in different develop- mental stages, i.e., SAG1, MAG1 and GRA7 (SMG), and a lysate derived from T . gondii tachyzoites (TLA) for prophylactic vaccination against cyst formation....
-
Water uptake kinetics and electrical transport in BaCe0.6Zr0.2Y0.1M0.1O3−δ (M = Tb, Pr, Fe) protonic conductors
PublicationBaCe0.6Zr0.2Y0.1M0.1O3−d (M = Fe, Pr, Tb) is a mixed conducting oxide in which three mobile charge carriers – oxygen ion, electron/hole, and protonic defects – are present. These types of materials have gained much interest as electrode materials for protonic ceramic fuel cells (PCFCs) and protonic ceramic electrolysis cells (PCECs). In this study, the water uptake and oxygen transport properties of different BaCe0.6Zr0.2Y0.1M0.1O3−d...
-
The effect of PEDOT morphology on hexavalent chromium reduction over 2D TiO2/PEDOT photocatalyst under UV–vis light
PublicationThe present study represents an approach to apply organic-inorganic hybrid materials for photocatalytic removal of heavy metals from the aqueous environment. The photocatalytic activity of the semiconductor modified with the conjugated polymer may depends on the conjugated polymer type, its amount and morphology. Therefore, in the present study the effect of poly (3, 4-ethylenedioxythiophene) (PEDOT) morphology on adsorption and photoreduction...
-
Graphene-based Silicone rubber Nanocomposites: Preparation, Characterization, and Properties
PublicationThis study aims to understand better the mechanical, thermal, and tribological behavior of silicone rubber nanocomposites. Graphite, exfoliated graphite, reduced graphene oxide, ionic liquid modified graphene oxide, silane-modified graphene oxide, fumed silica, and other fillers were used in this study. Adding graphene-based fillers to the silicone rubber matrix substantially improves the nanocomposite's mechanical, thermal, and...
-
Coupling between the photoactivity and CO2 adsorption on rapidly thermal hydrogenated vs. conventionally annealed copper oxides deposited on TiO2 nanotubes
PublicationHighly ordered spaced titanium dioxide nanotubes were fabricated via electrochemical anodization and modified with titania nanoparticles and copper oxides. Such materials were rapidly annealed in hydrogen atmosphere or conventionally in a tube furnace in air, in which the temperature slowly increases. Applied synthesis procedure can be considered as simple, cost-effective, and environmentally friendly as it allows for reduction...
-
Mitochondrial DNA copy number and trimethylamine levels in the blood: New insights on cardiovascular disease biomarkers
PublicationAmong cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease...
-
High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air
PublicationIn this study, SUS430 alloy is evaluated for its high temperature corrosion properties as a possible material for interconnects of solid oxide fuel cells (SOFCs). Samples are coated with Mn-Co by commercial physical vapor deposition (PVD) process and oxidized in air for 1250 h at 800 °C. A dense cubic Mn-Co-Fe spinel layer is formed on the surface, showing great effect on corrosion reduction compared with the samples without coating....
-
Enhancing electrochemical properties of an ITO-coated lossy-mode resonance optical fiber sensor by electrodeposition of PEDOT:PSS
PublicationA sensor working in multiple domains may offer enhanced information about the properties of an investigated analyte, including those containing biological species. It has already been shown that a dual-domain sensing capability, i.e., in optical and electrochemical domains, can be offered by lossy-mode resonance (LMR) sensors based on indium-tin-oxide (ITO) thin film. The spectral response of the LMR sensors depends on the refractive...
-
Magnetic photocatalysts for water treatment
PublicationThe concept of magnetic photocatalysts with separation function requires ferromagnetic material with high magnetic susceptibility to an external magnetic field to enable recycling of composite nanoparticles. Currently, much attention is devoted to functionalization of photocatalyst using MFe2O3, where M =Fe, Zn, Co, Mn. However direct contact between photocatalyst and magnetic iron oxide particles leads to photodissolution of iron...
-
Electrochemical simulation of metabolic reduction and conjugation reactions of unsymmetrical bisacridine antitumor agents, C-2028 and C-2053
PublicationElectrochemistry (EC) coupled with analysis techniques such as liquid chromatography (LC) and mass spectrometry (MS) has been developed as a powerful tool for drug metabolism simulation. The application of EC in metabolic studies is particularly favourable due to the low matrix contribution compared to in vitro or in vivo biological models. In this paper, the EC(/LC)/MS system was applied to simulate phase I metabolism of the representative...
-
Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells
PublicationThe specific role of size scale, surface capping, and aspect ratio of zinc oxide (ZnO) particles on toxicity toward prokaryotic and eukaryotic cells was investigated. ZnO nano and microparticles of controlled size and mor- phology were synthesized by wet chemical methods. Cytotoxicity toward mammalian cells was studied using a human osteoblast cancer cell line and antibacterial activity using Gram-negative bacteria (Escherichia...
-
SnO2 nanoparticles embedded onto MoS2 nanoflakes - An efficient catalyst for photodegradation of methylene blue and photoreduction of hexavalent chromium
PublicationIn this work, a molybdenum disulfide/tin oxide (MoS2/SnO2) composite was successfully prepared via a hydrothermal method. The MoS2/SnO2 composite was used as a photocatalyst for photoreduction of hexavalent chromium and photodecomposition of methylene blue. It exhibited higher photocatalytic performance under simulated solar light irradiation than MoS2 itself. The obtained material was characterized by several spectroscopic and...
-
The effect of high pressure on formation of volatile amines in minced meat of cod (Gadus morhua)
PublicationThe effects of high pressure at subzero temperature (193 MPa, at −20 °C) on inactivation of natural microflora of cod meat and degradation of trimethylamine oxide (TMAO) to trimethylamine (TMA) during refrigerated storage and to dimethylamine (DMA) and formaldehyde (FA) during frozen storage were investigated. The content of TMA, DMA and FA in cod meat did not change immediately after pressure treatment. During 40 days of frozen...
-
Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water
PublicationIn the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/ TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts’ characteristics by X-ray diffractometry...
-
Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials
PublicationSolid Oxide Electrolyzer Cells (SOECs) are very promising electrochemical devices for the production of syngas (H2/CO) by H2O and CO2 co-electrolysis. The structure, microstructure and electrical properties of the fuel electrode material play a crucial role in the performance of the whole cell and efficiency of electrocatalytic reduction of steam into hydrogen. In the present work, a novel Co and Pr co-doped SrTiO3-δ material attracted...
-
Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells
PublicationNew unsymmetrical bisacridines (UAs) demonstrated high activity not only against a set of tumor cell lines but also against human tumor xenografts in nude mice. Representative UA compounds, named C-2028, C-2045 and C-2053, were characterized in respect to their physicochemical properties and the following studies aimed to elucidate the role of metabolic transformations in UAs action. We demonstrated with phase I and phase II enzymes...
-
Treatment Wetland effluent quality improvement by usage sorbents of various origin
PublicationTWs are finding as low-cost and also effective system to treat domestic wastewater. The aim of this study is to find suitable adsorbing material for application in an additional treatment unit where treatment wetlands do not provide sufficient PO4 3- reduction level. Material M1 is a fine-grained by-product of thermal treatment of carbonate-siliceous rock (opoka) with high content of calcium carbonate CaCO3 in temperature 700°C....
-
Effect of Functionalization of Reduced Graphene Oxide Coatings with Nitrogen and Sulfur Groups on Their Anti-Corrosion Properties
PublicationElectrophoretic production of anticorrosion carbonaceous coatings on copper could be successfully performed by anodic oxidation of negatively charged graphene platelets suspended in an aqueous solution. The various platelets were synthesized by Hummer’s method followed by a hydrothermal reduction in the presence of NH4SCN which was expected to substitute some parts of graphene structure with nitrogen and sulfur groups. X-ray photoelectron...
-
Waste materials assessment for phosphorus adsorption toward sustainable application in circular economy
PublicationPhosphorus is the main determinant of nutrient enrichment in the water bodies. Many resources including nutrients may be shortly exhausted, assuming current consumption. This scenario leads to growing interest in resources recovery and/or reuse, which together with sustainable energy consumption and waste reduction are the main courses of the circular economy. Usage of coagulants in wastewater treatment plants (WWTP) does not allow...
-
CO2 capture enhancement by metal oxides impregnated coal fly ash: a breakthrough adsorption study
PublicationCoal fired power plants are significant contributors to CO2 emissions and produce solid waste in the form of coal fly ash, posing severe environmental challenges. This study explores the application of dry-impregnated coal fly ash for CO2 capture from gas stream. The modification of coal fly ash was achieved using alkaline earth metal oxides, specifically CaO and MgO, to alter its physical and chemical properties. Characterization...
-
Chitosan-based nanomaterials for removal of water pollutants
PublicationThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Nanoparticles preparation using microemulsion systems
PublicationMetallic nanoparticles become of current interests because they exhibit unique properties compared with those of metal atoms or bulk metal due to the quantum size effect and their large surface area, which make them attractive for applications in optics, electronics, catalysis biology and medicine. TiO2 has been used for environmental remediation purposes such as in the purification of water and air and also solar-to chemical energy...
-
Tuning of the Electrochemical Properties of Transparent Fluorine-doped Tin Oxide Electrodes by Microwave Pulsed-plasma Polymerized Allylamine
PublicationWe report here the dry, one-step, and low-temperature modification of FTO surfaces using pulsed plasma polymerization of allylamine (PPAAm). PPAAm/FTO surfaces were characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and contact angles to understand the morphological, structural, and optical properties. FTO were coated with a very thin layer of adherent cross-linked, pinhole-, and additive-free allylamine...
-
The Environmental Benefits of Photovoltaic Systems: The Impact on the Environment in the Production of Photovoltaic Systems: With a Focus on Metal Recovery
PublicationGreenhouse gases (GHGs) such as carbon dioxide, nitrous oxide and methane, trap heat and energy, thus preventing solar radiation from escaping back into space. As the quantity of greenhouse gases in the atmosphere increases so does the trapped heat and corresponding global temperature. As a result, storms become more violent, droughts more prevalent, glaciers melt, and sea levels rise, to name but a few effects of a rapidly changing...
-
Polymer and graphitic carbon nitride based nanohybrids for the photocatalytic degradation of pharmaceuticals in wastewater treatment – A review
PublicationPharmaceuticals, including antibiotics and anti-inflammatory drugs, have been frequently detected in water reservoirs, in concentrations ranging from ng/L to μg/L, owing to their wide use in treatment of human and animal disease. Their uncontrolled use results in their increased release into the environment which is harmful for humans, animals, aquatic life and aquatic system. To remove these pollutants from water bodies, various...
-
Cytocompatibility, antibacterial, and corrosion properties of chitosan/polymethacrylates and chitosan/poly(4‐vinylpyridine) smart coatings, electrophoretically deposited on nanosilver‐decorated titania nanotubes
PublicationThe development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with...
-
Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst
PublicationThe aim of the present investigation was the combination of ZnO nanostructures with nano-cellulose (NC) for the efficient degradation of tetracycline (TC) antibiotic under ultrasonic irradiation. The removal efficiency of 12.8% was obtained by the sole use of ultrasound (US), while the removal efficiency increased up to 70% by the US/ZnO treatment process. Due to the integration of ZnO nanostructures with NC, the removal efficiency...
-
Organic pollutants photodegradation increment with use of TiO2 nanotubes decorated with transition metals after pulsed laser treatment
PublicationAmong various titanium(IV) oxide (TiO2, titania) structures, 1D nanotubes (TiO2 NTs) produced during the two-electrode anodization process, are extensively utilized in sensors or supercapacitors as well as in photo(electro)catalytic water splitting. However, due to wide bandgap and fast electron-hole recombination additional modifications, mostly concerned on materials surface, are required. According to the recent research, TiO2...
-
Impact of strontium non-stoichiometry of SrxTi0.3Fe0.7O3-δ on structural, electrical, and electrochemical properties for potential oxygen electrode of intermediate temperature solid oxide cells
PublicationThis work presents the results of a comprehensive study on the impact of the A-site non-stoichiometry of SrxTi0.3Fe0.7O3-δ (x = 0.90, 0.95, 1.00, 1.05) ceramics on their physicochemical properties. The materials were fabricated by the conventional solid-state reaction method and their structure was determined by X-ray diffractometry, X-ray photoelectron spectroscopy and electron microscopy. Their sintering and thermal expansion...
-
Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies
PublicationRecently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO), is prepared by the oxidation of graphite. Though removal...
-
Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives
PublicationMineral carbonation using natural minerals or industrial wastes is a safe and promising strategy for CO2 sequestration. Application of industrial wastes for this purpose has significant ecological and environmental value, which is one of the key green technologies in the global carbon mitigation. This review summarizes the current research status of CO2 mineralization by industrial wastes. This work surveys the mechanisms and capacities...
-
AN OVERVIEW OF HEAT TRANSFER ENHANCEMENT BASED UPON NANOPARTICLES INFLUENCED BY INDUCED MAGNETIC FIELD WITH SLIP CONDITION VIA FINITE ELEMENT STRATEGY
PublicationThe mathematical model of heat generation and dissipation during thermal energy transmission employing nanoparticles in a Newtonian medium is investigated. Dimensionless boundary layer equations with correlations for titanium dioxide, copper oxide, and aluminium oxide are solved by the finite element method. Parameters are varied to analyze their impact on the flow fields. Various numerical experiments are performed consecutively...
-
Properties of Composite Oxide Layers on The Ti13Nb13Zr Alloy
PublicationThe development of composite oxide layers on the Ti13Nb13Zr alloy, their structure and properties have been demonstrated. Two subsequent methods were applied to prepare the composite layers. During the first stage gas oxidation produced a solid oxide layer, and subsequently oxide nanotubes were produced by using an electrochemical method. Scanning electron microscopy (SEM), chemical analysis, energy dispersive X-ray spectroscopy...
-
Nanotubular oxide layers and hydroxyapatite coatings on ‘Ti–13Zr–13Nb’ alloy
PublicationThe presented research was aimed to determine the mechanical properties of the nanotubular oxide layer covered with hydroxyapatite coating. The Ti–13Zr–13Nb alloy was oxidised in 1M phosphoric acid with an addition of 0?5% HF for HF solution at 20 V voltage. The electrochemically assisted deposition of hydroxyapatite was performed at cyclic polarisation in NH4H2PO4 and CaCl2 solution at 80uC. The mechanical properties were determined...
-
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures
PublicationThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube...
-
Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea
PublicationThe study aimed to determine the level of mercury (Hg) and its labile and stable forms in the surface sediments of the Baltic Sea. The work considers the impact of current and historical sources of Hg on sediment pollution, together with the influence of different environmental parameters, including water inflows from the North Sea. Surface sediments (top 5 cm) were collected in 2016–2017 at 91 stations located in different...
-
Nano Tin/Tin Oxide Attached onto Graphene Oxide Skeleton as a Fluorine Free Anode Material for Lithium-Ion Batteries
PublicationHerein, we show a composite formation method of tin/tin oxide nanoparticles with graphene oxide and CMC based on laser ablation technique as an electrode material for energy storage devices. The material exhibited a three-dimensional conducting graphene oxide network decorated with tin or tin oxide nanoparticles. The structure, homogeneous distribution of nanoparticles, and direct contact between inorganic and organic parts were...
-
Electrolytic deposition of reactive element thin films on Crofer 22 APU and evaluation of the resulting high-temperature corrosion protection properties at 700 °C–900 °C
PublicationThis article presents electrolytic deposition of thin Rare Earth (RE) coatings on Crofer 22 APU stainless steel substrates for high temperature applications, such as interconnects in solid oxide cell stacks. The deposition of coatings based on yttrium-, gadolinium-, lanthanum-, and cerium nitrates is discussed. The high temperature corrosion properties of surface-modified steels were examined using thermogravimetry and electrical...
-
Functionalization of graphene oxide coatings with phosphorus atoms and their corrosion resistance in sodium chloride environment
PublicationIn this work, we compared corrosion resistance of graphene oxide, and phosphorus functionalized reduced graphene oxide coatings obtained as a result of electrophoretic deposition on the copper substrate. Doping graphene oxide with phosphorus atoms was performed by a hydrothermal method in the presence of different amounts of phosphoric acid. Structural studies confirmed the insertion of phosphorus atoms into the graphene oxide...
-
Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity
PublicationAbstrakt artykułu pt. ''Nanotubular Ti Oxide Layers for Enhancement of Bone-Implant Bonding and Bioactivity''. The paper describes techniques to improve the bioactivity of titanium and ehnahnce the bone-implant bonding ability by the electrochemical anodization to fabricate titania nanotubular oxide layer.
-
Potentiometric Oxygen Sensor with Solid State Reference Electrode
PublicationThe concentration or the partial pressure of oxygen in an environment can be determined using different measuring principles. For high temperature measurements of oxygen, ceramic-based sensors are the most practical. They are simple in construction, exploration and maintenance. A typical oxygen potentiometric sensor consists of an oxygen ion conducting solid electrolyte and two electrodes deposited...
-
Fe-modified Mn2CuO4 spinel oxides: coatings based on abundant elements for solid oxide cell interconnects
PublicationThe current state of the art steel interconnect coating materials are based on critical raw material - Co-oxide spinels. Replacing Co-oxide spinels with alternative, abundant materials can reduce the dependence on the critical raw materials. Cobalt-free coatings with the general formula Mn2-xCuFexO4, where x = 0, 0.1, 0.3, were electrophoretically deposited on a ferritic stainless-steel support and evaluated. Prior to deposition,...
-
Multilayer coatings based on cerium oxide and manganese cobaltite spinel for Crofer22APU SOC interconnects
PublicationThe current state of the art steel interconnect coating materials are based on critical raw material - Co-oxide spinels. Replacing Co-oxide spinels with alternative, abundant materials can reduce the dependence on the critical raw materials. Cobalt-free coatings with the general formula Mn2-xCuFexO4, where x = 0, 0.1, 0.3, were electrophoretically deposited on a ferritic stainless-steel support and evaluated. Prior to deposition,...