Search results for: training set
-
Verification of the Parameterization Methods in the Context of Automatic Recognition of Sounds Related to Danger
PublicationW artykule opisano aplikację, która automatycznie wykrywa zdarzenia dźwiękowe takie jak: rozbita szyba, wystrzał, wybuch i krzyk. Opisany system składa się z bloku parametryzacji i klasyfikatora. W artykule dokonano porównania parametrów dedykowanych dla tego zastosowania oraz standardowych deskryptorów MPEG-7. Porównano też dwa klasyfikatory: Jeden oparty o Percetron (sieci neuronowe) i drugi oparty o Maszynę wektorów wspierających....
-
Exploration of Creativity Techniques in Software Engineering in Training-Application-Feedback Cycle
PublicationCreativity research has proposed about a hundred and fifty creativity techniques. The question is whether they can be applied in software engineering for creativity training or directing creativity in software projects. This paper aims at answering this question via a quasi-experiment conducted in Training-Application-Feedback cycle in which participants express their opinions about selected creativity techniques after training...
-
Multiscaled Hybrid Features Generation for AdaBoost Object Detection
PublicationThis work presents the multiscaled version of modified census features in graphical objects detection with AdaBoost cascade training algorithm. Several experiments with face detector training process demonstrate better performance of such features over ordinal census and Haar-like approaches. The possibilities to join multiscaled census and Haar features in single hybrid cascade of strong classifiers are also elaborated and tested....
-
Training Services in Small and Medium-sized Enterprises: Evidence from Poland
PublicationIn the knowledge-based economy knowledge and skills are becoming more and more significant for the success of companies. This applies also to firms from small and medium-sized enterprises (SMEs) sector. As large companies in many cases posses special divisions devoted to trainings, they normally have no problems with updating the knowledge and skills of their employees. The situation is different with regard to SMEs, which often...
-
Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer
PublicationIn this study, eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting (LightGBM) algorithms were used to model-predict the drying characteristics of banana slices with an indirect solar drier. The relationships between independent variables (temperature, moisture, product type, water flow rate, and mass of product) and dependent variables (energy consumption and size reduction) were established. For energy consumption,...
-
Development and validation of a model that includes two ultrasound parameters and the plasma D-dimer level for predicting malignancy in adnexal masses: an observational study
PublicationBackground: Pre-operative discrimination of malignant from benign adnexal masses is crucial for planning additional imaging, preparation, surgery and postoperative care. This study aimed to define key ultrasound and clinical variables and develop a predictive model for calculating preoperative ovarian tumor malignancy risk in a gynecologic oncology referral center. We compared our model to a subjective ultrasound assessment (SUA)...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublicationThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublicationThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Massive Open Online Courses (MOOCs) in hospitality and tourism
PublicationThe tourism industry, interesting and challenging, faces structural human resource problems such as skills shortages and staff turnover, seasonality and a high percentage of small to medium enterprises whose employees have limited time for training or education. Large tourism enterprises often span countries and continents, such as hotel chains, airlines, cruise companies and car rentals, where the employees need similar training...
-
Computer-Supported Polysensory Integration Technology for Educationally Handicapped Pupils
PublicationIn this paper, a multimedia system providing technology for hearing and visual attention stimulation is shortly presented. The system aims to support the development of educationally handicapped pupils. The system has been presented in the context of its configuration, architecture, and therapeutic exercise implementation issues. Results of pupils’ improvements after 8 weeks of training with the system are also provided. Training...
-
Adaptive CAD-Model Construction Schemes
PublicationTwo advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Factors Affecting the Effectiveness of Military Training in Virtual Reality Environment
PublicationIn this paper, we explored the factors influencing the effectiveness of military trainings performed in a virtual reality environment. The rationale for taking up the topic is the fact that such trainings are often conducted under specific operational procedures. These procedures may create rigorous frameworks for all elements of the learning environment, including the teacher’s performance. Therefore, to ensure the most conducive...
-
A review of emotion recognition methods based on keystroke dynamics and mouse movements
PublicationThe paper describes the approach based on using standard input devices, such as keyboard and mouse, as sources of data for the recognition of users’ emotional states. A number of systems applying this idea have been presented focusing on three categories of research problems, i.e. collecting and labeling training data, extracting features and training classifiers of emotions. Moreover the advantages and examples of combining standard...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Recognizing emotions on the basis of keystroke dynamics
PublicationThe article describes a research on recognizing emotional states on the basis of keystroke dynamics. An overview of various studies and applications of emotion recognition based on data coming from keyboard is presented. Then, the idea of an experiment is presented, i.e. the way of collecting and labeling training data, extracting features and finally training classifiers. Different classification approaches are proposed to be...
-
The impact of training and neurotrophins on functional recovery after spinal cord transection: cellular and molecular mechanisms contributing to motor improvement
PublicationBeneficial effects of locomotor training on the functional recovery after complete transection of the spinal cord indicate that in chronic spinal animals spontaneous recovery processes are enhanced and shaped by the training. The mechanisms of that use-dependent improvement are still not fully understood. This review tackles three aspects of this issue: (1) neurochemical attributes of functional improvement...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublicationThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Skin Conductance Level (SCL) data collected during mental training of group of 30 athletes
Open Research DataThe dataset contain raw Skin Conductance Level (SCL) data, collected at a frequency of 40 Hz and expressed in units of microsiemens (μS), during mental training of group of 30 athletes, under the project "Psychophysiology of guided and self-produced imagery in sport".
-
Train the trainer course
PublicationThis chapter presents the concept, evaluation and evaluation results for the train the trainer. This concept of train the trainers is prepared within Workpackage 5 of EU-funded project: MASTER BSR (Erasmus+ Strategic Partnership Programme). Due to the nature of adult learning the content is designed for the use of participatory methods (involved, active). This method uses various techniques of active learning e.g. group work,...
-
Development and test of fex, a fingers extending exoskeleton for rehabilitation and regaining mobility
PublicationThis paper presents the design process of an exoskeleton for executing human fingers' extension movement for the rehabilitation procedures and as an active orthosis purposes, together with its first clinical usability tests of a robotic exoskeleton. Furthermore, the Fingers Extending eXoskeleton (FEX) is a serial, under-actuated mechanism capable of executing fingers' extension. FEX is based on the state-of-art FingerSpine serial...
-
Immersive Technologies that Aid Additive Manufacturing Processes in CBRN Defence Industry
PublicationTesting unique devices or their counterparts for CBRN (C-chemical, B-biological, R-radiological, N-nuclear) defense relies on additive manufacturing processes. Immersive technologies aid additive manufacturing. Their use not only helps understand the manufacturing processes, but also improves the design and quality of the products. This article aims to propose an approach to testing CBRN reconnaissance hand-held products developed...
-
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublicationDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
Towards bees detection on images: study of different color models for neural networks
PublicationThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Computer-assisted assessment of learning outcomes in the laboratory of metrology
PublicationIn the paper, didactic experience with broad and rapid continuous assessment of students’ knowledge, skills and competencies in the Laboratory of Metrology, which is an example of utilisation of assessment for learning, is presented. A learning management system was designed for manage, tracking, reporting of learning program and assessing learning outcomes. It has ability to provide with immediate feedback, which is used by the...
-
PROJEKTOWANIE STANOWISK LABORATORYJNYCH WSPIERAJĄCYCH PROCES SZKOLENIA PRAKTYCZNEGO KADR MORSKICH DZIAŁU MASZYNOWEGO W ŻEGLUDZE MIĘDZYNARODOWEJ, PRZYBRZEŻNEJ I KRAJOWEJ
PublicationWithin the article a design offer of the Department of Ship and Power Plants of the Faculty of Ocean Engineering And Ship Technology at the Gdansk University of Technology has been presented. The offer concerns designing laboratory stations which might stand for the equipment of a didactic base of maritime educational centers i.e. maritime (naval) academies and schools as well as maritime affairs' professional training centers,...
-
Training of Deep Learning Models Using Synthetic Datasets
PublicationIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublicationA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
Data Acquisition and Processing for GeoAI Models to Support Sustainable Agricultural Practices
PublicationThere are growing opportunities to leverage new technologies and data sources to address global problems related to sustainability, climate change, and biodiversity loss. The emerging discipline of GeoAI resulting from the convergence of AI and Geospatial science (Geo-AI) is enabling the possibility to harness the increasingly available open Earth Observation data collected from different constellations of satellites and sensors...
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublicationThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Cross-Lingual Knowledge Distillation via Flow-Based Voice Conversion for Robust Polyglot Text-to-Speech
PublicationIn this work, we introduce a framework for cross-lingual speech synthesis, which involves an upstream Voice Conversion (VC) model and a downstream Text-To-Speech (TTS) model. The proposed framework consists of 4 stages. In the first two stages, we use a VC model to convert utterances in the target locale to the voice of the target speaker. In the third stage, the converted data is combined with the linguistic features and durations...
-
Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning
PublicationIn this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher...
-
Gdańsk University of Technology graduates’ forms of raising qualifications – years 2017-2018
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the years 2017-2018 on the forms of raising their qualifications. The survey was conducted in the period from 2019 to 2020, two years after the respondents obtained graduate status. The research sample included 2909 respondents. To summarize, the most common...
-
Gdańsk University of Technology graduates’ forms of raising qualifications – years 2011-2016
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the years 2011-2016 on the forms of raising their qualifications. The survey was conducted in the period from 2013 to 2018, two years after the respondents obtained graduate status. The research sample included 9525 respondents. To summarize, the most common...
-
Playback detection using machine learning with spectrogram features approach
PublicationThis paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...
-
Improving css-KNN Classification Performance by Shifts in Training Data
PublicationThis paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Computer-assisted pronunciation training—Speech synthesis is almost all you need
PublicationThe research community has long studied computer-assisted pronunciation training (CAPT) methods in non-native speech. Researchers focused on studying various model architectures, such as Bayesian networks and deep learning methods, as well as on the analysis of different representations of the speech signal. Despite significant progress in recent years, existing CAPT methods are not able to detect pronunciation errors with high...
-
CIP Security Awareness and Training: Standards and Practice
PublicationThese are critical infrastructure employees who have access to the critical cyber assets in the first place. This situation is well recognised by international and national standardisation bodies which recommend security education, training and awareness as one of the key elements of critical infrastructure protection. In this chapter the standards are identified and their relevant areas are described. A practical implementation...
-
CIP Security Awareness and Training: Standards and Practice
PublicationThese are critical infrastructure employees who have access to the critical cyber assets in the first place. This situation is well recognized by international and national standardization bodies which recommend security education, training and awareness as one of the key elements of critical infrastructure protection. In this chapter the standards are identified and their relevant areas are described. A practical implementation...
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublicationThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
COLLABORATIVE LEARNING ENVIRONMENT FOR ENGINEERING EDUCATION (COLED)
PublicationCollaborative Learning Environment for Engineering Education is a European project implemented under the Erasmus + program, The main goal of 5 partners from 4 different European countries – Bulgaria, Poland, Portugal and Romania is to develop an innovative collaborative training approach, encompassing curricula related to the introduction of enterprise automation. Project activities are carried out in the period from Dctober 2018...
-
Continuous learning as a method of raising qualifications – the perspective of workers, employers and training organizations
PublicationContinuous learning is discussed in strategic documents of Poland and the European Union. In Poland, the idea of continuous learning is not very popular. However, in the context of strong competition in the labour market and the progressive globalization processes, the skills issue takes on new meaning — both for employees and employers. In order to adapt skills to labour market needs it is necessary to conduct adequate studies...
-
Power of the high alpha brainwaves in the mental imagery experiment in sport: the "Training Session" scenario.
Open Research DataThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the SMR brainwaves in the mental imagery experiment in sport: the "Training Session" scenario.
Open Research DataThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...
-
Power of the low alpha brainwaves in the mental imagery experiment in sport: the "Training Session" scenario.
Open Research DataThe data were collected to perform research on the neural oscillation during mental imagery in sport. The study's main aim was to examine the cortical correlations of imagery depending on instructional modality (guided vs self-produced) using various sport-related scripts. The research was based on the EEG signals recorded during the session with the...