Filters
total: 1281
displaying 1000 best results Help
Search results for: CONTINUAL LEARNING · REPRESENTATION LEARNING
-
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublicationBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Love your mistakes!—they help you adapt to change. How do knowledge, collaboration and learning cultures foster organizational intelligence?
PublicationPurpose: The study aims to determine how the acceptance of mistakes is related to adaptability to change in a broad organizational context. Therefore it explores how knowledge, collaboration, and learning culture (including “acceptance of mistakes”) might help organizations overcome their resistance to change. Methodology: The study uses two sample groups: students aged 18–24 (330 cases) and employees aged >24 (326 cases) who work...
-
Technology-Enhanced Environmental Learning: Co-design of Educational Mobile Application Case
PublicationThe process of co-creating an educational mobile application to support environmentally friendly behavior is presented in this paper. The research material consisted of quantitative data collected on the application during the first testing phase by early adopters. The results suggest that the most frequently used features of the app were related to transport and educational activities. While women tended to split their time between...
-
The effects of relational and psychological capital on work engagement: the mediation of learning goal orientation
PublicationPurpose – This paper proposes a research model in which learning goal orientation (LGO) mediates the impacts of relational capital and psychological capital (PsyCap) on work engagement. Design/methodology/approach – Data obtained from 475 managers and employees in the manufacturing and service industries in Poland were utilized to assess the linkages given above. Common method variance was controlled by the unmeasured latent method...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Optimizing Medical Personnel Speech Recognition Models Using Speech Synthesis and Reinforcement Learning
PublicationText-to-Speech synthesis (TTS) can be used to generate training data for building Automatic Speech Recognition models (ASR). Access to medical speech data is because it is sensitive data that is difficult to obtain for privacy reasons; TTS can help expand the data set. Speech can be synthesized by mimicking different accents, dialects, and speaking styles that may occur in a medical language. Reinforcement Learning (RL), in the...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublicationBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublicationMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Projektowanie zajęć prowadzonych na odległość (10h e-learning)
e-Learning Courses -
Koło naukowe CJO - Tech-Enhanced English Learning (TEEL)
e-Learning Courses -
Automated detection of pronunciation errors in non-native English speech employing deep learning
PublicationDespite significant advances in recent years, the existing Computer-Assisted Pronunciation Training (CAPT) methods detect pronunciation errors with a relatively low accuracy (precision of 60% at 40%-80% recall). This Ph.D. work proposes novel deep learning methods for detecting pronunciation errors in non-native (L2) English speech, outperforming the state-of-the-art method in AUC metric (Area under the Curve) by 41%, i.e., from...
-
An Adaptive Network Model for a Double Bias Perspective on Learning from Mistakes within Organizations
PublicationAlthough making mistakes is a crucial part of learning, it is still often being avoided in companies as it is considered as a shameful incident. This goes hand in hand with a mindset of a boss who dominantly believes that mistakes usually have negative consequences and therefore avoids them by only accepting simple tasks. Thus, there is no mechanism to learn from mistakes. Employees working for and being influenced by such a boss...
-
Computational Analysis of Transformational Organisational Change with Focus on Organisational Culture and Organisational Learning: An Adaptive Dynamical Systems Modeling Approach
PublicationTransformative Organisational Change becomes more and more significant both practically and academically, especially in the context of organisational culture and learning. However computational modeling and formalization of organisational change and learning processes are still largely unexplored. This chapter aims to provide an adaptive network model of transformative organisational change and translate a selection of organisational...
-
AUTOMATIC LEARNING OF STRATEGY AND RULES IN CARD GAMES USING IMAGE FROM CAMERA
PublicationBelow work tries to answer a question: if it is possible to replace real human with computer system in social games. As a subject for experiments, card games were chosen, because they require a lot of player interaction (playing and taking cards), while their rules are easy to present in form of clear list of statements. Such a system, should allow real players to play without constant worrying about guiding or helping computer...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublicationThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublicationThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublicationAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Optical method supported by machine learning for dynamics of C‐reactive protein concentrations changes detection in biological matrix samples
PublicationIn this article we present the novel spectroscopy method supported with machine learning for real-time detection of infectious agents in wastewater. In the case of infectious diseases, wastewater monitoring can be used to detect the presence of inflammation biomarkers, such as the proposed C-reactive protein, for monitoring inflammatory conditions and mass screening during epidemics for early detection in communities of concern,...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublicationEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublicationThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublicationLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Some aspects of blended-learning education
Publication -
Note on universal algoritms for learning theory
PublicationW 2001 Cucker i Smale zaproponowali nowe podejście do teorii uczenia się w oparciu o problematykę teorii aproksymacji.W 2005 i 2007 Bivev, Cohen, Dahmen, DeVore i Temlyakov opublikowali dwie prace z teorii uczenia się. W omawianej publikacji uogólniliśmy ich rezultaty jednocześnie upraszczając dowody.
-
E-learning in tourism and hospitality: A map
PublicationThe impact of information and communication technologies (ICT) on tourism and hospitality industries has been widely recognized and investigated as a one of the major changes within the domains in the last decade: new ways of communicating with prospective tourists and new ways of purchasing products arisen are now part of the industries’ everyday life. Poor attention has been paid so far to the role played by new media in education...
-
A consensus-based approach to the distributed learning
Publication -
Prototype selection algorithms for distributed learning
Publication -
An agent-based framework for distributed learning
Publication -
Structure and Randomness in Planning and Reinforcement Learning
PublicationPlanning in large state spaces inevitably needs to balance the depth and breadth of the search. It has a crucial impact on the performance of a planner and most manage this interplay implicitly. We present a novel method \textit{Shoot Tree Search (STS)}, which makes it possible to control this trade-off more explicitly. Our algorithm can be understood as an interpolation between two celebrated search mechanisms: MCTS and random...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublicationThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Projekt Leonardo da Vinci EMDEL (European Model for Distance Education and Learning) - otwarte szkolenia online.
PublicationW referacie zaprezentowano główne zadania oraz ofertę szkoleniową Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej (CEN PG) w kontekście realizowanych projektów Unii Europejskiej. Przedstawiono projekt Leonardo da Vinci EMDEL - European Model for Distance Education and learning - realizowany przez CEN PG w latach 2001-2005 oraz opisano doświadczenia w zakresie adaptacji i lokalizacji opracowanych przez partnerów projektu...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublicationThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublicationSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
Designing learning spaces through international and interdisciplinary collaborative design studio: The case of engineer architects and pedagogic students
PublicationThe study explores the dynamics and outcomes of an international interdisciplinary design studio focusing on innovative learning spaces. Conducted over two years between students of Faculty of Architecture at Gdansk Tech and pedagogic students from Kibbutzim College in Tel Aviv, this design-based study examines the contributions of unique educational program to student learning, the evolution of the design process, collaboration,...
-
Wioleta Kucharska dr hab. inż.
PeopleWioleta Kucharska (Associate Professor at the Faculty of Management and Economics of the Gdansk University of Technology, Fahrenheit Universities Union, Poland), published so far with Wiley, Springer, Taylor & Francis, Emerald, Sage, Elsevier, and Routledge. She is scientifically involved in tacit knowledge and the company culture of knowledge, learning, and collaboration (KLC approach) topics. Recently, she discovered the...
-
Fault diagnosis of marine 4-stroke diesel engines using a one-vs-one extreme learning ensemble
PublicationThis paper proposes a novel approach for intelligent fault diagnosis for stroke Diesel marine engines, which are commonly used in on-road and marine transportation. The safety and reliability of a ship's work rely strongly on the performance of such an engine; therefore, early detection of any type of failure that affects the engine is of crucial importance. Automatic diagnostic systems are of special importance because they can...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublicationThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
An Approach to Data Reduction for Learning from Big Datasets: Integrating Stacking, Rotation, and Agent Population Learning Techniques
Publication -
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublicationThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Detection of People Swimming in Water Reservoirs with the Use of Multimodal Imaging and Machine Learning
PublicationEvery year in many countries, there are fatal unintentional drownings in different water reservoirs like swimming pools, lakes, seas, or oceans. The existing threats of this type require creating a method that could automatically supervise such places to increase the safety of bathers. This work aimed to create methods and prototype solutions for detecting people bathing in water reservoirs using a multimodal imaging system and...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
„Active learning w praktyce” - 17. Szkolenie certyfikowane 13.12.2022 r.
e-Learning Courses -
„Active learning w praktyce” - 4. Szkolenie certyfikowane 21.10.2022 r.
e-Learning Courses -
Deep learning-enabled integration of renewable energy sources through photovoltaics in buildings
PublicationInstalling photovoltaic (PV) systems in buildings is one of the most effective strategies for achieving sustainable energy goals and reducing carbon emissions. However, the requirement for efficient energy management, the fluctuating energy demands, and the intermittent nature of solar power are a few of the obstacles to the seamless integration of PV systems into buildings. These complexities surpass the capabilities of rule-based...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublicationProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Transformational Leadership and Acceptance of Mistakes as a Source of Learning: Poland-USA Cross-Country Study
PublicationThis study explores the influence of transformational leadership on internal innovativeness mediated by mistakes acceptance, including country and industry as factors to be considered and gender and risk-taking attitude as moderators. General findings, primarily based on the US samples (healthcare, construction, and IT industry), confirmed that transformational leadership and internal innovativeness are mediated by mistakes acceptance...