Filters
total: 10653
-
Catalog
- Publications 9457 available results
- Journals 229 available results
- Conferences 36 available results
- People 180 available results
- Inventions 13 available results
- Projects 3 available results
- Laboratories 1 available results
- e-Learning Courses 185 available results
- Events 8 available results
- Open Research Data 541 available results
displaying 1000 best results Help
Search results for: finite element analysis
-
LNG TANK IN ŚWINOUJŚCIE: NONLINEAR ANALYSIS OF THE TANK DOME ELEMENTS BEHAVIOUR
PublicationIn this paper, the dome of a tank in the Świnoujście LNG terminal is analysed. Some of the rafter ribs at the connection with hangers were not mounted during construction of the tank dome. Therefore, it has become necessary to estimate its response, which has been done with the aid of some computational models of the dome, that have been created in the finite element method environment. Different local models are studied, aiming...
-
Macro-elements and Model Order Reduction for Efficient Three-Dimensional FEM Analysis
PublicationAn efficient model order reduction (MOR) methodology for three dimensional vector finite element method (FEM) is developed to accelerate simulations of the structures containing features that cause strong variations of mesh density. As the result of presented algorithm, FEM subsystems of equations corresponding to the selected refined region are converted into a very compact sets of linear equations, called macro-elements.Numerical...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublicationIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Local buckling of composite channel columns
PublicationThe investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic...
-
Material Identification of the Human Abdominal Wall Based On the Isogeometric Shell Model
PublicationThe human abdominal wall is an object of interest to the research community in the context of ventral hernia repair. Computer models require a priori knowledge of constitutive parameters in order to establish its mechanical response. In this work, the Finite Element Model Updating (FEMU) method is used to identify an heterogeneous shear modulus distribution for a human abdominal wall model, which is based on nonlinear isogeometric...
-
A technique of experiment aided virtual prototyping to obtain the best spindle speed during face milling of large-size structures
PublicationThe paper presents an original method concerning vibration suppression problem during milling of large-size and geometrically complicated workpieces with the use of novel way of selecting the spindle speed. This consists in repetitive simulations of the cutting process for subsequent values of the spindle speed, until the best vibration state of the workpiece is reached. An appropriate method of obtaining a computational model,...
-
Modelling of Abdominal Wall Under Uncertainty of Material Properties
PublicationThe paper concerns abdominal wall modelling. The accurate prediction and simulation of abdominal wall mechanics are important in the context of optimization of ventral hernia repair. The shell Finite Element model is considered, as the one which can be used in patient-specific approach due to relatively easy geometry generation. However, there are uncertainties in this issue, e.g. related to mechanical properties since the properties...
-
Mechanical behaviour of the implant used in human hernia repair under physiological loads
PublicationIn laparoscopic operations of abdominal hernias some recurrences still take place, even when applying a surgical mesh. This is usually caused by a failure of the connection between the tissue and the implant. The study deals with the influence of an implant’s orientation on forces in joints, which connect the mesh to human tissues. In the paper, the implant is modelled as a membrane structure within framework of the Finite Element...
-
Advanced numerical modelling for predicting residual compressive strength of corroded stiffened plates
PublicationAn advanced methodology for predicting the residual compressive strength of corroded stiffened plates is developed here using the non-linear finite element method. The non-uniform loss of a plate thickness is accounted for on a macro-scale. In contrast, mechanical properties are changed using the constitutive model to reflect the corrosion degradation impact on a micro-scale. Three different stiffened plate thicknesses are considered,...
-
Selected local stability problems of channel section flanges made of aluminium alloys
PublicationThe paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard cold-formed...
-
Influence of the notch rounding radius on estimating the elastic notch stress concentration factor in a laser welded tee joint
PublicationIn recent years an increased interest of industry in sandwich-type metal structures can be observed. These structures consist of thin plates of 2.5 mm in thickness separated by stiffeners of different shapes and forms. Welds joining the plates and stiffeners are made on the outer side of the plates using laser welding technique. A locally focused source of heat causes the plate to melt creating a very narrow and elongated joint....
-
A New Type of Macro-Elements for Efficient Two-Dimensional FEM Analysis
PublicationThis letter deals with a model order reduction technique applicable for driven and eigenvalue problems solved using the finite element method (FEM). It allows one to efficiently compute electromagnetic parameters of structures comprising small features that require strong local mesh refinement. The subdomains of very fine mesh are separated from the global domain as so called macro-elements that undergo model reduction. The macro-elements...
-
New Concept of Numerical Ship Motion Modelling for Total Ship Operability Analysis by Integrating Ship and Environment Under One Overall System
PublicationThe paper presents a new concept of overall ship motion modelling for application to total ship operability. The delivered model is a multi-phase and includes both submerged part of ship’s hull and the surrounding water as a unique body. The Discrete Finite Element Method is applied. The model is successfully examined and illustrated for a selected AHTS.
-
Analiza drgań kładki kompozytowej wywołanych działaniem wiatru
PublicationW pracy omówiono sposób przeprowadzenia uproszczonej, numerycznej analizy drgań kładki kompozytowej wywołanych działaniem wiatru. Rozważaniom poddano swobodnie podpartą konstrukcję o rozpiętości 16 m i przekroju w kształcie litery U. W pierwszej kolejności przeprowadzono dwuwymiarową analizę opływu niepodatnego kształtu przekroju kładki w poziomym strumieniu wiatru o prędkości 10 m/s. Obliczenia numeryczne przeprowadzono programem...
-
Behaviour of Asymmetric Structure with Base Isolation Made of Polymeric Bearings
PublicationEarthquake-induced ground motions are the most severe and unpredictable threats to the structures all around the world. Seismic excitations cause a lot of damage in a wide variety of ways, leaving thousands of casualties in their wake. Due to randomness of earthquake occurrence, lack of visible causes and their power of destructiveness, structural engineers need to develop new technical solutions and protection systems against...
-
Influence of plastic deformation on stray magnetic field distribution of soft magnetic steel sample
PublicationThe effect of various combinations of conditions, i.e., presence of the Earth’s magnetic field during and after deformation on the distribution of stray magnetic field of S355 steel sample, which is locally deformed, was investigated. Some of the stages of the experiment were carried out in zero magnetic field. Compensation of the Earth’s magnetic field was obtained by the application of a pair of Helmholtz coils. These coils are...
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublicationThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
On analysis of double-impact test of 1500-kg vehicle into w-beam guardrail system
PublicationEvery day on roads many scenarios of accidents may occur. One of the measures to minimize their consequences is road safety barriers. Finite Element analyses are being increasingly used to support the physical testing of these devices. The paper addresses the issue of a secondary impact into the previously damaged w-beam guardrail system. This situation belongs to one of the most dangerous which can happen on roads and may cause...
-
Tensile failure study of 3D printed PLA using DIC technique and FEM analysis
PublicationThe paper presents the experimental and numerical study of the failure behaviour of Fused Filament Fabricated (FFF) Polylactic Acid (PLA) samples subjected to tensile load. The examined samples are printed in flat orientation with 0◦, 45◦ and 90◦ raster angles. During the experiments the deformation of the specimens is continuously scanned with the 3D Aramis measuring system utilizing the digital imaging correlation technique,...
-
Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels
PublicationThe present research aims to study the influence of the soil-structure interaction (SSI) and existence or absence of masonry infill panels in steel frame structures on the earthquake-induced pounding-involved response of adjacent buildings. The study was further extended to compare the pounding-involved behavior versus the independent behavior of structures without collisions, focusing much on dynamic behavior of single frames....
-
Wave Frequency Effects on Damage Imaging in Adhesive Joints Using Lamb Waves and RMS
PublicationStructural adhesive joints have numerous applications in many fields of industry. The gradual deterioration of adhesive material over time causes a possibility of unexpected failure and the need for non-destructive testing of existing joints. The Lamb wave propagation method is one of the most promising techniques for the damage identification of such connections. The aim of this study was experimental and numerical research on...
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublicationThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
Magnetic switching of Kerker scattering in spherical microresonators
PublicationMagneto-optical materials have become a key tool in functional nanophotonics, mainly due to their ability to offer active tuning between two different operational states in subwavelength structures. In the long-wavelength limit, such states may be considered as the directional forward- and back-scattering operations, due to the interplay between magnetic and electric dipolar modes, which act as equivalent Huygens sources. In this...
-
Ultimate compressive strength assessment of uncleaned and cleaned corroded plates with locked crack
PublicationThe work presented here investigates the structural response of cleaned corroded plates, subjected to compressive load in the presence of a locked crack, where the change of mechanical properties as a result of corrosion development and the cleaning process is also accounted for. A Finite Element model for assessing the compressive strength, considering geometric and material nonlinearities, is developed, and the analysed plates...
-
On implementation of fibrous connective tissues’ damage in Abaqus software
PublicationConnective fibrous tissues, such as tendons and ligaments, in humans and animals exhibit hyperelastic behaviour. The constitution of the material of these tissues is anisotropic due to the presence of the collagen fibres, where one family of fibres is the typical case. Traumatic events and/or aging may sometimes lead to the damage of the tissue. The study of motion of affected joints or limbs is usually not permitted in vivo. This...
-
Double-diffusive natural convection energy transfer in magnetically influenced Casson fluid flow in trapezoidal enclosure with fillets
PublicationThe prime motive of this disquisition is to deal with mathematical analysis of natural convection energy transport driven by combined buoyancy effects of thermal and solutal diffusion in a trapezoidal enclosure. Casson fluid rheological constitutive model depicting attributes of viscoelastic liquids is envisioned. The influence of the inclined magnetic field governed by Lorentz field law is also considered. To raise the essence...
-
Numerical Methods for Partial Differential Equations
e-Learning CoursesCourse description: This course focuses on modern numerical techniques for linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations (PDEs), and integral equations fundamental to a large variety of applications in science and engineering. Topics include: formulations of problems in terms of initial and boundary value problems; finite difference and finite element discretizations; boundary element approach;...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublicationThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
An analytical four-layer horizontal electric current dipole model for analysing underwater electric potential in shallow seawater
PublicationThe paper presents a new analytical four‑layer (air–water–bottom–non‑conductive layer) horizontal electric dipole model which allows an accurate approximation of ship’s Underwater Electric Potential (UEP) from a sufficient depth in shallow coastal marine waters. The numerical methods, usually Finite Element Method (FEM) or Boundary Elements Method (BEM), are typically used to estimate the electric field and the distribution of...
-
Influence of Added Water Mass on Ship Structure Vibration Parameters in Virtual and Real Conditions
PublicationModelling of ship structures in a virtual environment is now standard practice. Unfortunately, many engineers forget to consideri the influence of added water on the frequency values and the amplitude of natural vibrations. The article presents the effect of water damping on the frequency values of the individual natural vibration modes. The tests were carried out in two stages. First, the mentioned values were determined using...
-
Behaviour of orthotropic surgical implant in hernia repair due to the material orientation and abdomen surface deformation
Publicationrelation to the different range of typical deformations observed in different directions and zones of abdomen surface due to the patients’ life activities, has a significant influence on the extreme junction forces in the mesh–tissue connections and hence the repair persistence. The finite element model of the orthotropic implant was developed, and the junction forces in the connections of tissue and mesh were studied. The kinematical...
-
Tensile validation tests with failure criteria comparison for various GFRP laminates
PublicationThe paper studies the mechanical properties of glass fibre reinforced polymers (GFRP) with various types and orientation of reinforcement. Analyzed specimens manufactured in the infusion process are made of polymer vinyl ester resin reinforced with glass fibres. Several samples were examined containing different plies and various fibres orientation [0, 90] or [+45, –45]. To assess the mechanical parameters of laminates, a series...
-
FEM simulations applied to the failure analysis of RC structure under the influence of municipal sewage pressure
PublicationThe paper discusses a failure mechanism of reinforced concrete (RC) structure with steel cover that failed under the influence of municipal sewage pressure. To explain the reasons of failure, in-situ measurements, laboratory experiments and comprehensive Finite Element Method (FEM) computations were performed. Non-destructive in-situ scanning tests were carried out to determine quantity and cover thickness of embedded reinforcement...
-
Destruction of shell structures under the dynamic load on the human skull trauma basis
PublicationThe main aim of this work is to investigate patterns of potential orbital bone fractures due to mechanical injuries. The solution of the main problem is followed by analysis of several testing examples having straight correlation with civil engineering structures, in which materials of wide range of stiffness are applied. To solve the main problem, the three-dimensional finite element method (FEM) model of the orbital region has...
-
On a 3D material modelling of smart nanocomposite structures
PublicationSmart composites (SCs) are utilized in electro-mechanical systems such as actuators and energy harvesters. Typically, thin-walled components such as beams, plates, and shells are employed as structural elements to achieve the mechanical behavior desired in these composites. SCs exhibit various advanced properties, ranging from lower order phenomena like piezoelectricity and piezomagneticity, to higher order effects including flexoelectricity...
-
Detection of Delamination in Laminate Wind Turbine Blades Using One-Dimensional Wavelet Analysis of Modal Responses
PublicationThis paper demonstrates the effectiveness of a nondestructive diagnostic technique used to determine the location and size of delamination in laminated coatings of wind turbine blades. This is realized based on results of numerical and experimental investigations obtained by the use of the finite element method (FEM) and laser scanning vibrometry (LSV). The proposed method is based on the one-dimensional continuous wavelet transform...
-
Experimental and Numerical Study on Dynamics of Two Footbridges with Different Shapes of Girders
PublicationThe paper presents the experimental and numerical results of the dynamic system identification and verification of the behavior of two footbridges in Poland. The experimental part of the study involved vibration testing under different scenarios of human-induced load, impulse load, and excitations induced by vibration exciter. Based on the results obtained, the identification of dynamic parameters of the footbridges was performed...
-
Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers
PublicationSeismic-induced pounding between adjacent buildings may have serious consequences, ranging from minor damage up to total collapse. Therefore, researchers try to mitigate the pounding problem using different methods, such as coupling the adjacent buildings with stiff beams, connecting them by using viscoelastic links, and installing damping devices in each building individually. In the current paper, the effect of using linear and...
-
Electrical Tree Growth Behavior Under AC and DC High Voltage in Power Cables
PublicationThis work investigates the impact of an applied AC and DC high voltage on the electrical tree behavior in extruded cross-linked polyethylene (XLPE) insulation based on simulation and experimental validation. Extensive partial discharge (PD) testing methods are being implemented for high voltage cables under AC voltage for monitoring their condition. However, these PD testing methods cannot be utilized for power cables under DC...
-
Behaviour of asymmetric structures with base isolation made of Polymeric Bearings
PublicationEarthquake-induced ground motions are the most severe and unpredictable threats to the structures all around the world. Seismic excitations cause a lot of damage in a wide variety of ways, leaving thousands of casualties in their wake. During the last few years alone, the world has witnessed many major earthquakes, five of which have caused far-reaching consequences of a national scale for Haiti (January 2010), Chile (February...
-
Numerical analysis of lumbar spine injury during road safety barrier collision
PublicationPurpose: Enhancing road safety is a critical goal worldwide, necessitating the development of clear standards for road safety systems. This study focuses on lumbar spine (L-spine) compression injuries during collisions with concrete road safety barriers (RSBs). It aims to analyze internal forces during impact to understand L-spine injury biomechanics in such accidents. Methods: The research included a literature review, analyzing...
-
NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA
PublicationAs a structure degrades some changes in its dynamical behavior can be observed, and inversely, observation and evaluation of these dynamical changes of the structure can provide information of structural state of the object. Testing of the real structure, besides of being costly, can cover only limited working states. It is particularly considerable in case of hardly accessible, and randomly/severely dynamically loaded offshore...
-
Thermal analysis of Magnetohydrodynamics (MHD) Casson fluid with suspended Iron (II, III) oxide-aluminum oxide-titanium dioxide ternary-hybrid nanostructures
PublicationThis study is carried out to enhance and analyze the thermal performance of non-Newtonian Casson fluid by immersing Ternary hybrid nanoparticles Fe3O4-Al2O3-TiO2 uniformly. To model the behaviour of such complex phenomena mathematically, a system of complex transport differential equations is developed by utilizing a non-Fourier heat transfer model for energy transport. The non-dimensional system of transport equations involving...
-
A Generalized Framework Towards Structural Mechanics of Three-layered Composite Structures
PublicationThree-layered composite structures find a broad application. Increasingly, composites are being used whose layer thicknesses and material properties diverge strongly. In the perspective of structural mechanics, classical approaches to analysis fail at such extraordinary composites. Therefore, emphasis of the present approach is on arbitrary transverse shear rigidities and structural thicknesses of the individual layers. Therewith...
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublicationA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
Validation of Hydraulic Mechanism during Blowout Trauma of Human Orbit Depending on the Method of Load Application
PublicationThe more we know about mechanisms of the human orbital blowout type of trauma, the better we will be able to prevent them in the future. As long as the buckling mechanism’s veracity is not in doubt, the hydraulic mechanism is not based on equally strong premises. To investigate the correctness of the hydraulic mechanism’s theory, two different methods of implementation of the hydraulic load to the finite element method (FEM) model...
-
Orbital blowout trauma occurring at the workplace – clinical, biomechanical and legal aspects
PublicationIntroduction and objective: Craniofacial injury at the workplace may lead to orbital blowout fractures. The aim of the study is the development of own numerical model of the eye orbit, assessment of the damage zones, and comparing them with clinical examinations. In addition, the current legal status of patients after injuries is presented Material and methods: In laboratory tests performed on bones collected from the upper and...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublicationThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls
PublicationFluid–structure interaction (FSI) gained a huge attention of scientists and researchers due to its applications in biomedical and mechanical engineering. One of the most important applications of FSI is to study the elastic wall behavior of stenotic arteries. Blood is the suspension of various cells characterized by shear thinning, yield stress, and viscoelastic qualities that can be assessed by using non-Newtonian models. In this...