dr hab. inż. Jakub Karczewski
Zatrudnienie
- Dyrektor Instyt. Nanotechnologii i Inżyn. Materiał w Instytut Nanotechnologii i Inżynierii Materiałowej
- Profesor uczelni w Instytut Nanotechnologii i Inżynierii Materiałowej
Publikacje
Filtry
wszystkich: 242
Katalog Publikacji
Rok 2020
-
Pulsed Laser Deposition of Bismuth Vanadate Thin Films—The Effect of Oxygen Pressure on the Morphology, Composition, and Photoelectrochemical Performance
PublikacjaThin layers of bismuth vanadate were deposited using the pulsed laser deposition technique on commercially available FTO (fluorine-doped tin oxide) substrates. Films were sputtered from a sintered, monoclinic BiVO4 pellet, acting as the target, under various oxygen pressures (from 0.1 to 2 mbar), while the laser beam was perpendicular to the target surface and parallel to the FTO substrate. The oxygen pressure strongly affects...
-
Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes
PublikacjaTitanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or lowcost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning...
-
The Effect of Laser Re-Solidification on Microstructure and Photo-Electrochemical Properties of Fe-Decorated TiO2 Nanotubes
PublikacjaFossil fuels became increasingly unpleasant energy source due to their negative impact on the environment; thus, attractiveness of renewable, and especially solar energy, is growing worldwide. Among others, the research is focused on smart combination of simple compounds towards formation of the photoactive materials. Following that, our work concerns the optimized manipulation of laser light coupled with the iron sputtering to...
-
The geometry of free-standing titania nanotubes as a critical factor controlling their optical and photoelectrochemical performance
PublikacjaTitanium dioxide nanotubes are regarded as one of the most important functional materials and due to their unique electronic properties, chemical stability and photocorrosion resistance, they find applications in, for example, highly efficient photocatalysis or perovskite solar cells. Nevertheless, modification of TiO2 nanotubes is required to overcome their main drawback, i.e. large energy bandgap (>3.2 eV) limiting their ability...
-
The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters
PublikacjaThe laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section....
-
The influence of the Cu2O deposition method on the structure, morphology and photoresponse of the ordered TiO2NTs/Cu2O heterojunction
PublikacjaThe increased interest in highly ordered titania structures exhibiting tubular shape that could be directly formed onto the stable substrate is related with the intensive research on their modification enabling absorption of light within the wide solar spectrum and its further conversion into electric or chemical energy. Among others, formation of uniform 3D heterojunctions based on the TiO2 nanotubes attracts attention since porous...
-
The Influence of the Electrodeposition Parameters on the Properties of Mn-Co-Based Nanofilms as Anode Materials for Alkaline Electrolysers
PublikacjaIn this work, the influence of the synthesis conditions on the structure, morphology, and electrocatalytic performance for the oxygen evolution reaction (OER) of Mn-Co-based films is studied. For this purpose, Mn-Co nanofilm is electrochemically synthesised in a one-step process on nickel foam in the presence of metal nitrates without any additives. The possible mechanism of the synthesis is proposed. The morphology and structure...
-
The influence of thermal treatment on electrocatalytic properties of Mn-Co nanofilms on nickel foam toward oxygen evolution reaction activity
PublikacjaThis work evaluates electrodeposited and differently treated Mn-Co catalysts for their oxygen evolution reaction activity. Catalysts are evaluated in the as-deposited and heat treated state: after 350 C and 600 C. Results show that the highest electrochemical activity is obtained for the as-deposited Mn-Co oxyhydroxide, which possibly possess a layered double hydroxide structure. After the heat treatment process, especially after...
-
The pulsed laser ablation synthesis of colloidal iron oxide nanoparticles for the enhancement of TiO2 nanotubes photo-activity
PublikacjaThe rapid, only a few minutes long synthesis of FeO, Fe3O4, and Fe2O3nanoparticles mixture utilizing the pulsedlaser ablation using simply pure iron target and water was demonstrated. The size and crystal phase of Fe-basedNPs were characterized using DLS and HR-TEM techniques, respectively. The metastable suspension of FeO,Fe3O4, and Fe2O3nanoparticles was used to the decoration of anodized TiO2nanotubes (TiO2-NTs) by means ofthe...
-
Thermally tuneable optical and electrochemical properties of Au-Cu nanomosaic formed over the host titanium dimples
PublikacjaAu-Cu nanostructures offer unique optical and catalytic properties unlike the monometallic ones resulting from the specific interaction. Among others, they have the ability to exhibit surface plasmon resonance, electrochemical activity towards the oxygen and hydrogen evolution reaction (OER, HER) as well as improved photoresponse in relation to monometalic but those properties depend highly on the substrate where bimetallic structures...
Rok 2019
-
A negative effect of carbon phase on specific capacity of electrode material consisted of nanosized bismuth vanadate embedded in carbonaceous matrix
PublikacjaLithium-ion batteries (LIBs) are widely used all over the world. The LIBs belong to a renewable energy source and energy storage devices. The increase in energy demand causes that new materials of higher energy and higher power densities are still under investigation. Herein, we compare electrochemical properties of bismuth vanadate (BiVO4) embedded and not embedded into carbonaceous matrix as an anode material along with structural...
-
Amyloid fibril formation in the presence of water structure-affecting solutes
PublikacjaThe impact of the differently hydrated non-electrolytes (protein structure destabilizers) on the fibrillation of hen egg white lysozyme (HEWL) was investigated. Two isomeric urea derivatives i.e. butylurea (BU) and N,N,N′,N′-tetramethylurea (TMU) were chosen as a tested compounds. The obtained results show that butylurea exerts greater impact on HEWL and its fibrillation than tetramethylurea. Both substances decrease the time of...
-
Badania tytanianu strontu podstawianego żelazem jako potencjalnego materiału katodowego dla tlenkowych ogniw paliwowych
PublikacjaW publikacji przedstawiono motywację podjętych badań nad podstawianymi żelazem tytanianem strontu do zastosowań w wysokotemperaturowych ogniwach paliwowych oraz ukazano wstępne wyniki badań elektrycznych oraz elektrochemicznych.
-
Characterization methods of nickel nano-particles obtained by the ex-solution process on the surface of Pr, Ni-doped SrTiO3 perovskite ceramics
PublikacjaIn this paper, a novel electrode material based on Pr, Ni co-doped strontium titanate ( Sr0.7Pr0.3)xTi1−yNiyO3 with constant amount of 30% praseodymium dopant, different amount of nickel (y = 0.06 and y = 0.10) and additional nonstoichiometry in Sr-site (x = 1; x = 0.9 and x = 0.8) was investigated as fuel electrode for SOEC devices. A porous ceramics were prepared by solid-state reaction method. X-ray diffraction measurements...
-
Deposition and Electrical and Structural Properties of La0.6Sr0.4CoO3 Thin Films for Application in High-Temperature Electrochemical Cells
PublikacjaLow-temperature deposition of electroceramic thin films allows the construction of new devices and their integration with existing large-scale fabrication methods. Developing a suitable low-cost deposition method is important to further advance the development of microdevices. In this work, we deposited a 1-lm-thick La0.6Sr0.4CoO3d (LSC) perovskite with high electrical conductivity on sapphire substrates at 400C and analyzed its...
-
Electrochemical properties of porous Sr0.86Ti0.65Fe0.35O3 oxygen electrodes in solid oxide cells: Impedance study of symmetrical electrodes
PublikacjaThis work evaluates porous Sr0.86Ti0.65Fe0.35O3 (STF35) as a possible oxygen electrode material for Solid Oxide Cells. The powder synthesis was performed by solid state method. Characterization included DC electrical conductivity study of sintered bulk samples and impedance spectroscopy study of symmetrical electrodes deposited on gadolinium doped ceria substrates. Measurements were carried out in atmospheres with different pO2...
-
Electrochemical Stability of Few-Layered Phosphorene Flakes on Boron-Doped Diamond: A Wide Potential Range of Studies in Aqueous Solutions
PublikacjaTwo-dimensional phosphorene has attracted great interest since its discovery as a result of its extraordinary properties. Two-dimensional single crystals of phosphorene can be useful for electrochemical (EC) sensing applications due to their enhanced surface-to-volume ratio. We proposed to investigate the electrochemical performance of phosphorene deposited directly on boron-doped diamond (BDD) electrodes. Noncovalent interaction...
-
Evaluation of Praseodymium and Gadolinium Doped Ceria as a Possible Barrier Layer Material for Solid Oxide Cells
PublikacjaIn this work, nanocrystalline layers based on the Pr, Gd co-doped CeO2 were investigated. For the preparation of thin layers, lowtemperature spray pyrolysis technique was used. Different stoichiometries of the layers were produced for comparison on polished sapphire substrates. The microstructure of the prepared thin layers was studied by scanning electron microscopy (SEM), energydispersive X-ray spectroscopy (EDS) and X-ray diffractometry (XRD)....
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublikacjaMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
High-temperature kinetics study of 430L steel powder oxidized in air at 600–850 °C
PublikacjaThe 430L stainless steel powder with a mean particle size of 95 μm was studied to determine its high-temperature oxidation properties. Continuous thermogravimetric measurements were carried out for 100 h in air at temperatures in the range of 600–850 °C. Even though a considerable amount of Cr (up to ˜5 wt.% Cr) inside the grains was depleted – especially inside small grains – no breakaway oxidation was observed. This indicates...
-
Influence of the electrosynthesis conditions on the spontaneous release of anti-inflammatory salicylate during degradation of polypyrrole coated iron for biodegradable cardiovascular stent
PublikacjaIn this work, the spontaneous release of anti-inflammatory salicylate from polypyrrole (PPy) coated iron has been studied during degradation of the material in phosphate buffer saline at 37 C. The sodium salicylate was incorporated into PPy in a one-step electropolymerization process. The influence of the synthesis conditions such as sodium salicylate concentration, pyrrole concentration and deposition charge on drug release profile...
-
Ionic conductivity behavior by activated hopping conductivity (AHC) of barium aluminoborosilicate glass–ceramic system designed for SOFC sealing
PublikacjaNon-conducting BaO-B2O3-Al2O3-SiO2 parent glasses designed for solid oxide fuel cell (SOFC) sealing applications were prepared using the melt-quenching technique. The glass formation region was determined according to phase equilibrium relations and was found to be in the composition range 70BaO-(x)Al2O3-(10−x)B2O3-20SiO2 where 3.0 < x < 6.0 wt%. The conductivity values obtained conductivity ranged from 10−5 to 10−10 S/cm at temperatures...
-
Non-enzymatic flexible glucose sensing platform based on nanostructured TiO2–Au composite
PublikacjaAll over the world the number of people suffering from diabetes and related complications is drastically growing. Therefore, the need for accurate, reliable and stable sensor for monitoring of glucose in human body fluids is becoming highly desirable. In this work we show that material composed of gold layers deposited onto TiO2 nanotubes (NTs) formed onto the flexible Ti foil exhibits great response toward glucose oxidation and...
-
Tailoring Electro/Optical Properties of Transparent Boron-Doped Carbon Nanowalls Grown on Quartz
PublikacjaCarbon nanowalls (CNWs) have attracted much attention for numerous applications in electrical devices because of their peculiar structural characteristics. However, it is possible to set synthesis parameters to vary the electrical and optical properties of such CNWs. In this paper, we demonstrate the direct growth of highly transparent boron-doped nanowalls (B-CNWs) on optical grade fused quartz. The effect of growth temperature...
-
The effect of nitrogen on the structure and thermal properties of beryllium-containing Na-(Li)-Si-O-N glasses
PublikacjaTwo oxynitride glass series with the composition of 35Na2O-5BeO-(60-x)SiO2-xSi3N4 and 9Li2O- 27Na2O-5BeO-(59-x)SiO2-xSi3N4, were prepared. The glasses' topography and structure were studied by Scanning Electron Microscopy and Raman spectroscopy. The composition was analyzed by Inductively Coupled Plasma Optical Emission Spectrometer, SEM-EDS and nitrogen and oxygen elemental analyzer. Na-(Li)-Be-silicate glasses were found to contain...
-
The Influence of Iron Doping on Performance of SrTi1-XFexO3-δ Perovskite Oxygen Electrode for SOFC
PublikacjaSolid Oxide Fuel Cells (SOFC) are based on electrolytes and mixed ionic and electronic conductivity (MIEC) materials. The need to reduce costs causes an increase in interest of new compounds suitable for operating temperatures between 600 °C and 800 °C. The SrTi1-xFexO3 (STF) perovskite material is a perspective material that could be used for the oxygen electrodes. In this work STF materials with different content of iron (x =...
-
The Influence of the Co-Dopant Dexamethasone Phosphate on the Electrodeposition Process and Drug-Release Properties of Polypyrrole-Salicylate on Iron
PublikacjaIn this work, the influence of incorporation of two anti-inflammatory drugs dexamethasone phosphate and sodium salicylate on the electrodeposition process of polypyrrole (PPy) film on iron has been studied. The incorporation of the agents into PPy has been carried out in a one-step electropolymerization process on oxidizable iron. The role of each drug agent during the deposition process has been discussed. The morphological and...
-
Thermal, electrical, and magnetic properties of Fe2O3–PbO–SiO2 glass prepared by traditional melt-quenching and twin roller fast-cooling methods
PublikacjaIn this study, Fe–Pb–Si oxide glasses containing between 12.5 and 17.5 mol% Fe2O3 were prepared using two different methods comprising traditional melt-quenching and twin roller fast-cooling techniques. The topography and structure of the materials obtained were characterized by X-ray powder diffraction and scanning electron microscopy. All of the materials were found to be amorphous. The topography of most of the glasses comprised...
Rok 2018
-
Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs
PublikacjaA multi-tool analytical practice was used for the characterisation of a 16th century carpet manufactured in Cairo. A mild extraction method with hydrofluoric acid has been evaluated in order to isolate intact flavonoids and their glycosides, anthraquinones, tannins, and indigoids from fibre samples. High-performance liquid chromatography coupled to spectroscopic and mass spectrometric detectors was used for the identification of...
-
Determination of ionic conductivity in the Bi-Si-O and Pb-Si-O glasses
PublikacjaImpedance spectroscopy measurements in various gas atmospheres were carried out in order to explain the doubts about the type of carriers and the mechanism of electrical conductivity in Bi-Si-O and Pb-Si-O glasses. In bismuth silicate glass, a typical ionic conductivity with oxygen ions as charge carriers was observed. The level of electrical conductivity of the glass at 400 °C was 5 × 10−8 S·cm−1 , with the activation energy of...
-
Fabrication, structural and electrical properties of Sr(V,Nb)O 3-δ perovskite materials
PublikacjaThe SrV1-xNbxO3-δ materials with different niobium content in perovskite B-sublattice were prepared by a solid-state reaction process. The microstructure and phase compositions of obtained samples were analyzed by the X-ray diffraction technique (XRD) and scanning electron microscopy (SEM). The electrical conductivity of samples was measured by a DC 4-wire method in range of 100–600 °C in different gas conditions. The oxidation...
-
Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy
PublikacjaProtective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their...
-
Low temperature deposition of dense MnCo 2 O 4 protective coatings for steel interconnects of solid oxide cells
PublikacjaIn this work manganese cobalt spinel (MnCo2O4) coatings were deposited on steel substrates by spray pyrolysis at 390 °C. This is at much lower temperatures than previously reported (typically in excess of 900 °C). It was possible to produce coatings with well controlled thickness (2-5-10 μm). The as-deposited coatings were evaluated for their microstructural changes and electrical conductivity up to 800 °C. Results confirm the...
-
Metal dusting phenomena of 501 AISI furnace tubes in refinery fractional distillation unit
PublikacjaThe purpose of this investigation was to conduct the failure analysis of 501 AISI furnace tubes places before distillation column in fractional distillation unit. The investigated furnace tubes were planned to work for ten years however after just two years of exploitation <30% of the material left. The observed corrosion process had the intense and complex character. The well-adhered shiny black deposits and deep, round pits were...
-
NANOCRYSTALLINE CATHODES FOR SOLID OXIDE FUEL CELLS MADE OF NOBLE METALS
PublikacjaCathodes for solid oxide fuel cells prepared by the infiltration method at 600 °C are presented. The infiltration method allows to produce stable, nanostructured electrodes. Cathodes were prepared using gold, platinum, La2NiO4+δ (L2N) and La0.6Sr0.4Co0.2Fe0.8O3 δ (LSCF). Symmetrical cathode/electrolyte/cathode samples were prepared and examined with SEM microscopy and electrochemical impedance spectroscopy. Despite successful deposition...
-
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
PublikacjaIn this work we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium...
-
Ordered titania nanotubes layer selectively annealed by laser beam for high contrast electrochromic switching
PublikacjaThe phase conversion from amorphous into crystalline one in the selected area of as-anodized titania nanotubes was achieved via laser treatment. The optimized processing parameters enable fast, one-minute crystallization of titania within an area limited by a shadow mask and without any morphology damage of ordered TiO2 tubular film. The laser annealed titania nanotubes could be easily overgrown by a conducting polymer without...
-
Origin and fate of nanoparticles in marine water – Preliminary results
PublikacjaThe number, morphology and elemental composition of nanoparticles (<100 nm) in marine water was investigated using Variable Pressure Scanning Electron Microscopy (VP-SEM) and Energy-dispersive X-ray spectroscopy (EDS). Preliminary research conducted in the Baltic Sea showed that the number of nanoparticles in seawater varied from undetectable to 380 (x102) cm-3. Wind mixing and density barriers (thermocline) had a significant impact...
-
Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials
PublikacjaSolid Oxide Electrolyzer Cells (SOECs) are very promising electrochemical devices for the production of syngas (H2/CO) by H2O and CO2 co-electrolysis. The structure, microstructure and electrical properties of the fuel electrode material play a crucial role in the performance of the whole cell and efficiency of electrocatalytic reduction of steam into hydrogen. In the present work, a novel Co and Pr co-doped SrTiO3-δ material attracted...
-
Synthesis and properties of porous Sr 0.96 Y 0.04 Ti 1−x Nb x O 3
PublikacjaA series of porous, single phase Sr0.96Y0.04Ti1-xNbxO3 samples was obtained using a wet synthesis method (modified citrate sol-gel) method. Temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) measurements have shown high stability of the obtained material in variable (oxidizing/reducing) atmospheres. All samples exhibit high conductivity in hydrogen atmosphere with the highest value (around 1S/cm)...
Rok 2017
-
Bacteriophages as Factories for Eu2O3 Nanoparticle Synthesis
PublikacjaThe use of phage display to identify peptides with an ability to bind and synthesize Eu2O3 nanoparticles is demonstrated in this report. This is the first report of modified phages specifically binding a lanthanide. The peptides exposed on virions revealed very strong binding to Eu2O3 nanoparticles and the ability to catalyze Eu2O3 nanoparticles’ formation from Eu(OH)3 and Eu(NO3)3 solutions. The luminescence emission spectrum...
-
Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route toward High Rates of Electrochemical Biosensing
PublikacjaIn this study, we have demonstrated the fabrication of novel materials called boron-doped carbon nanowalls (B:CNWs), which are characterized by remarkable electrochemical properties such as high standard rate constant (k°), low peak-to-peak separation value (ΔE) for the oxidation and reduction processes of the [Fe(CN)6]3–/4– redox system, and low surface resistivity. The B:CNW samples were deposited by the microwave plasma-assisted...
-
Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition
PublikacjaCalcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65°C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined...
-
Distribution of relaxation times as a method of separation and identification of complex processes measured by impedance spectroscopy
PublikacjaImpedance spectroscopy is one of the most commonly performed measurements to characterize electronic and electrochemical systems. Impedance spectra have limited resolution and many different processes may overlap what could be the reason of obstructions in its proper later analysis. Up to date, there are three approaches to solve this problem: examining impedance spectra itself, fitting spectra with equivalent circuits, and calculating...
-
Fabrication and Significant Photoelectrochemical Activity of Titania Nanotubes Modified with Thin Indium Tin Oxide Film
PublikacjaOrdered titanium dioxide nanotubes (TiO2NTs) modified with indium tin oxide (ITO) films were obtained via magnetron sputtering, in which ITO plate was used as a target, onto the as-anodized titania support followed by the calcination process. The morphology of fabricated material with deposited oxide was investigated using scanning electron microscopy. Raman and UV–Vis spectroscopies were utilized to characterize crystalline phase...
-
Investigation of poly(3,4-ethylenedioxythiophene) deposition method influence on properties of ion-selective electrodes based on bis(benzo-15-crown-5) derivatives
PublikacjaGlassy carbon electrodes modified by conductive polymers and membrane with derivatives of bis(benzo-15-crown-5) were tested as solid contact ion selective electrodes for K+ ions concentration determination. PEDOT with PSS, Cl- and ClO4- counter ions was electrochemically deposited onto glassy carbon substrates using four different electrochemical approaches (potentiostatic, galvanostatic, potentiodynamic and potentiostatic pulses)....
-
La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone
PublikacjaInfiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates...
-
Mixed ionic-electronic conductivity and structural properties of strontium-borate glass containing nanocrystallites of Bi2 VO5.5
PublikacjaSamples of strontium borate glass containing bismuth vanadate nanocrystallites were prepared. Nanocomposites containing up to 45mol% of the Bi2VO5.5 phase exhibit electrical properties closer to the strontium-borate glass than to the ferroelectric Bi2VO5.5 ceramic. The glass matrix still may contain some part of bismuth and vanadium ions even after crystallization process and there is too little of crystalline phase to observe...
-
Nanocrystalline cathode functional layer for SOFC
PublikacjaRecently, it was shown that thin functional layers introduced between an electrolyte and cathode might improve cathode performance. However, the mechanism of this improvement still needs analysis. In this paper, a thin (∼140 nm), spin-coated perovskite layer (La0.6Sr0.4Co0.2Fe0.8O3-δ) was placed between a cathode (La0.6Sr0.4Co0.2Fe0.8O3-δ) and an electrolyte (Ce0.8Gd0.2O2-δ) and the effects of this investigated. The microstructure...
-
Nanostructuring of thin Au films deposited on ordered Ti templates for applications in SERS
PublikacjaIn this work the results on thermal nanostructuring of the Au films on Ti templates as well as morphology and optical properties of the obtained structures are reported. The bimetal nanostructures are fabricated in a multi-step process. First, the titania nanotubes are produced on the surface of Ti foil by anodization in an ethylene glycol-water solution containing fluoride ions. This is followed by chemical etching in oxalic acid...
wyświetlono 7656 razy