Filtry
wszystkich: 578
Wyniki wyszukiwania dla: BACKSTEPPING, NEURAL NETWORKS, RBF, DYNAMIC SHIP POSITIONING
-
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
Designing RBF Networks Using the Agent-Based Population Learning Algorithm
Publikacja -
Cluster-dependent rotation-based feature selection for the RBF networks initialization
Publikacja -
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification
PublikacjaThe article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...
-
Artificial Neural Networks in Forecasting the Consumer Bankruptcy Risk with Innovative Ratios
PublikacjaThis study aims to develop nine different consumer bankruptcy forecasting models with the help of three types of artificial neural networks and to verify the usefulness of new, innovative ratios for implementation in personal finance. A learning sample comprising 200 consumers, and a testing sample of 500 non-bankrupt and 500 bankrupt consumers from Poland are used. The author employed three research approaches to using the entry...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublikacjaThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Classification of Glacial and Fluvioglacial Landforms by Convolutional Neural Networks Using a Digital Elevation Model
PublikacjaThe rise of artificial neural networks (ANNs) has revolutionized various fields of research, demonstrating their effectiveness in solving complex problems. However, there are still unexplored areas where the application of neural networks, particularly convolutional neural network (CNN) models, has yet to be explored. One area is where the application of ANNs is even expected is geomorphology. One of the tasks of geomorphology...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublikacjaIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...
-
International Journal of Neural Networks
Czasopisma -
IEEE TRANSACTIONS ON NEURAL NETWORKS
Czasopisma -
Path planning algorithm for ship collisions avoidance in environment with changing strategy of dynamic obstacles
PublikacjaIn this paper a path planning algorithm for the ship collision avoidance is presented. Tested algorithm is used to determine close to optimal ship paths taking into account changing strategy of dynamic obstacles. For this purpose a path planning problem is defined. A specific structure of the individual path and fitness function is presented. Principle of operation of evolutionary algorithm and based on it dedicated application...
-
The application of neural networks in forecasting the influence of traffic-induced vibrations on residential buildings
PublikacjaTraffic-induced vibrations may cause the cracking of plaster, damage to structural elements and, in extreme cases, may even lead to the structural collapse of residential buildings. The aim of this article is to analyse the effectiveness of a method of forecasting the impact of vibrations on residential buildings using the concept of artificial intelligence. The article presents several alternative forecasting systems for which...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublikacjaIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction
PublikacjaShip routing process taking into account weather conditions is a constrained multi-objective optimization problem and it should consider various optimization criteria and constraints. Formulation of a stability-related, dynamic route optimization constraint is presented in this paper. One of the key objectives of a cross ocean sailing is finding a compromise between ship safety and economics of operation. This compromise should...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublikacjaBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
System for monitoring road slippery based on CCTV cameras and convolutional neural networks
PublikacjaThe slipperiness of the surface is essential for road safety. The growing number of CCTV cameras opens the possibility of using them to automatically detect the slippery surface and inform road users about it. This paper presents a system of developed intelligent road signs, including a detector based on convolutional neural networks (CNNs) and the transferlearning method employed to the processing of images acquired with video...
-
The Impact of 8- and 4-Bit Quantization on the Accuracy and Silicon Area Footprint of Tiny Neural Networks
PublikacjaIn the field of embedded and edge devices, efforts have been made to make deep neural network models smaller due to the limited size of the available memory and the low computational efficiency. Typical model footprints are under 100 KB. However, for some applications, models of this size are too large. In low-voltage sensors, signals must be processed, classified or predicted with an order of magnitude smaller memory. Model downsizing...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublikacjaA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete
PublikacjaPredicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition...
-
Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets
PublikacjaArtificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublikacjaHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Artificial Neural Networks for Comparative Navigation
Publikacja -
Neural Networks and the Evolution of Environmental Change
PublikacjaZmiany środowiskowe na Ziemii są odwieczne i liczą około 4 miliardy lat. Homo sapiens wpłynął na każdy aspekt środowiska ziemskiego w wyniku rozwoju ludzkości na przestrzeni ostatnich milionów lat. Ale nic tak nie wpłynęło na wzrost i szybkość zmian na Ziemi jak ludzka aktywność w ciągu ostatnich dwóch stuleci. Po raz pierwszy zmiany ekosystemów były tak intensywne i zachodziły na tka wielką skalę i z taką szybkością jak nigdy...
-
Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks
PublikacjaThe estimation of systolic and diastolic blood pressure using artificial neural network is considered in the paper. The blood pressure values are estimated using pulse arrival time, and additionally RR intervals of ECG signal together with respiration signal. A single layer recurrent neural network with hyperbolic tangent activation function was used. The average blood pressure estimation error for the data obtained from 21 subjects...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublikacjaThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Session-Based Recommendation with Graph Neural Networks with an Examination of the Impact of Local and Global Vectors
PublikacjaThis study investigates the application of graph neural networks (GNN) in session-based recommendation systems (SR), focusing on a key modification involving the use of a global vector. Session-based recommendation systems often face challenges in accurately capturing user behavior due to the limited data available within individual sessions. The SR-GNN model, originally designed for automatic feature extraction from session graphs...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublikacjaThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublikacjaThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublikacjaA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublikacjaNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Simplified approach to assess the dynamic response of a container ship subjected to bow slamming load
PublikacjaSimplified approach to assess the dynamic response of a container ship subjected to the bow slamming load, resulting in a transient vibratory response, typically called a 'whip-ping', is presented. The accurate numerical modelling is very complex and involves cou-pling of the hydrodynamic and structural solution at every time step, leading to huge com-putational and workload cost. Thus, the one-way coupling methodology is adopted,...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublikacjaEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublikacjaThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Diagnosis of damages in family buildings using neural networks
PublikacjaThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublikacjaArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Neural networks in the diagnostics of induction motor rotor cages.
PublikacjaW środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...
-
Applications of neural networks and perceptual masking to audio restoration
PublikacjaOmówiono zastosowania algorytmów uczących się w dziedzinie rekonstruowania nagrań fonicznych. Szczególną uwagę zwrócono na zastosowanie sztucznych sieci neuronowych do usuwania zakłócających impulsów. Ponadto opisano zastosowanie inteligentnego algorytmu decyzyjnego do sterowania maskowaniem perceptualnym w celu redukowania szumu.
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublikacjaThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Sign Language Recognition Using Convolution Neural Networks
PublikacjaThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
Application of neural networks for turbine rotor trajectory investigation.
PublikacjaW pracy przedstawiono rezultaty badań sieci neuronowych przewidujących trajektorię wirnika turbinowego uzyskanych ze stanowiska turbiny modelowej. Badania wykazały, iż sieci neuronowe wydają się być z powodzeniem zastosowane do przewidywania trajektorii ruchu wirnika turbiny. Najważniejszym zadaniem wydaje się poprawne określenie wektorów sygnałów wejściowych oraz wyjściowych jak również prawidłowe stworzenie sieci neuronowej....
-
Problems in toxicity analysis - application of fuzzy neural networks
PublikacjaPraca dotyczy zastosowania sztucznych sieci neuronowych do przygotowywania danych do szacowania toksyczności (wody powierzchniowe). Przygotowanie to polega na sztucznym zagęszczaniu zbioru danych, które następnie mogą być wykorzystane do szacowania/modelowania wartości toksyczności na ich podstawie.
-
Primary role identification in dynamic social networks
PublikacjaIdentyfikacja ról w sieci społecznej jest jednym z podstawowych zagadnień analizy takich sieci. W artykule przedstawiamy nowe podejście do tego zagadnienia. Pokazujemy w jaki sposób można dokonać identyfikacji ról poprzez wykorzystanie zaproponowanego modelu zachowań aktorów. Model taki tworzą podgrafy wzorcowe oraz diagramy stanów okreslające sekwencje aktywności w zachowaniu aktorów. Na bazie wyznaczonych modeli zachowań oraz...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublikacjaThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublikacjaLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Neural networks based NARX models in nonlinear adaptive control
Publikacja