Wyniki wyszukiwania dla: HIGH TEMPERATURE CORROSIONSOLID OXIDE CELL (SOC)BILAYERSPROTECTIVE COATINGREACTIVE ELEMENT EFFECT
-
High-performance NdSrCo2O5+δ–Ce0.8Gd0.2O2-δ composite cathodes for electrolyte-supported microtubular solid oxide fuel cells
PublikacjaNdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC...
-
An approach for estimation of water wall degradation within pulverized-coal boilers
PublikacjaThe main aim of this paper is to estimate the lifetime of water walls of pulverized-coal boilers at nominal conditions as well as after degradation of water tubes. An approach for a pulverized-coal chamber degradation process has been formulated based on operational and experimental data. This model was formulated using on-line state monitoring of a pulverized coal burner with aim of preventing the fireplace screens from high degradation...
-
Badania stabilności chemicznej kompozytowego elektrolitu 3-YSZ-Al2O3 w stosunku do materiałów elektrodowych do zastosowania w średniotemperaturowych ogniwach paliwowych
PublikacjaJednym z podstawowych wymogów stawianych mate- riałom na elektrolity do średniotemperaturowych ogniw paliwowych IT-SOFC (ang. intermediate-temperature solid oxide fuel cells) jest ich kompatybilność chemiczna z elektrodami w temperaturach zarówno eksploatacji, jak i wytwarzania ogniw. W celu sprawdzenia, czy badany w pracy kompozytowy elektrolit o osnowie z częściowo stabilizowanego ditlenku cyrkonu i z wtrąceniami tlenku glinu...
-
Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline
PublikacjaA microwave method was used for the synthesis of TiO2-CuO oxide systems. A detailed investigation was made of the effect of the molar ratio of components (TiO2:CuO=9:1, 7:3, 5:5, 3:7, 1:9) on the crystalline structure and morphology. Transmission electron microscopy (TEM) confirmed the presence of octahedral and rod-shaped titania particles and sheet copper(II) oxide particles; moreover, HRTEM analysis indicated the presence of...
-
Characteristics of LaCo 0.4 Ni 0.6-x Cu x O 3-δ ceramics as a cathode material for intermediate-temperature solid oxide fuel cells
PublikacjaIn this study, the effects of Cu-ion substitution on the densification, microstructure, and physical properties of LaCo0.4Ni0.6-xCuxO3-δ ceramics were investigated. The results indicate that doping with Cu ions not only enhances the densification but also promotes the grain growth of LaCo0.4Ni0.6-xCuxO3-δ ceramics. The Cu substitution at x ≤ 0.2 can suppress the formation of La4Ni3O10, while the excess Cu triggers the formation...
-
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
PublikacjaA graphene oxide (GO), reduced graphene oxide (RGO) and poly(3,4-ethylenedioxytiophene)- reduced graphene oxide (PEDOT-RGO composite) gas sensors were successfully fabricated using an electrodeposition method. The electrodeposition was carried out in aqueous GO dispersions. In order to obtain RGO and PEDOT-RGO, the electrochemical reduction of GO and PEDOT-GO was carried out in 0.1 M KCl at constant potential of −0.85 V. The GO, RGO...
-
Effect of Semiconductor Element Substitution on the Electric Properties of Barium Titanate Ceramics
PublikacjaThe investigated ceramics were prepared by a solid-state reaction from simple oxides and carbonates with the use of a mixed oxide method (MOM). The morphology of BaTi0.96Si0.04O3 (BTSi04) ceramics was characterised by means of a scanning electron microscopy (SEM). It was found that Si+4 ion substitution supported the grain growth process in BT-based ceramics. The EDS results confirmed the high purity and expected quantitative composition...
-
Preparation and characterisation of iron substituted Mn1.7Cu1.3-xFexO4 spinel oxides (x = 0, 0.1, 0.3, 0.5)
PublikacjaSpinel oxides with the general formula Mn1.7Cu1.3-xFexO4 (x= 0, 0.1, 0.3, 0.5) were prepared and evaluated in this work for their properties at high temperatures. The effect of partially substituting Cu by Fe has not been studied so far for this group of materials and is thus evaluated in this work. Mn1.7Cu1.3-xFexO4 powders were synthesised by a soft chemistry process and studied in terms of crystallographic phase analysis, electrical...
-
EFFECT OF SURFACE STATE AND STRESS ON AN OXIDATION OF THE ZIRCALOY-2 ALLOY
PublikacjaZr alloys are widely used as materials for nuclear fuel pellets in the nuclear industry. In the case of the LOCA or RIA happen, a temperature may locally reach high values. Even if the high temperature maintains shortly, the zirconium oxides may become permeable, absorb hydrogen appearing in cooling water from decomposition reaction and crack because of formation and brittle failure of hydrides. Such model cannot so far take into...
-
Preparation and structure of nanocrystalline sol-gel derived Cu doped LiTi2O4 powders
PublikacjaAmong the spinel oxides materials, lithium titanate (Li1+xTi2-xO4 where 0 ≤ x ≤ 0.33) could be very interested from pratical applications point of view. Lithium titanate is a II type spinel oxide superconductor with relatively high (~13 K for x = 0) superconducting transition temperature Tc. Above Tc lithium titanate shows metallic behaviour and can be used e.g. as electrodes for rechargeable lithium-ion batteries. Since the discovery...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublikacjaIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...
-
Tuning Electrochemical Performance by Microstructural Optimization of the Nanocrystalline Functional Oxygen Electrode Layer for Solid Oxide Cells
PublikacjaFurther development of solid oxide fuel cell (SOFC) oxygen electrodes can be achieved through improvements in oxygen electrode design by microstructure miniaturisation alongside nanomaterials implementation. In this work, improved electrochemical performance of an La0.6Sr0.4Co0.2Fe0.8O3-d (LSCF) cathode was achieved by the controlled modification of the La0.6Sr0.4CoO3-d (LSC) nanocrystalline interlayer introduced between a porous...
-
Design considerations for compact microstrip resonant cells dedicated to efficient branch-line miniaturization
PublikacjaA conventional compact microstrip resonant cell (CMRC)has been thoroughly investigated to enhance its slow-wave properties and subsequently ensure an efficient miniaturization of a microstrip circuit. The geometry of a classic CMRC has been improved in terms of slowwave effect in two progressive steps: (i) a single-element topology has been replaced with a double-element one and (ii) a high-impedance section has been refined by...
-
The hydration of selected biologically relevant molecules – the temperature effect on apparent molar volume and compression
PublikacjaThe densities and sound velocities at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K were measured for aqueous solutions of glycine, trimethylamine-N-oxide, taurine and N-methylacetamide. From these data, the apparent molar volumes, V the apparent molar isentropic compressions, KS,, and the Passynski hydration numbers of solutes were determined. The concentration dependencies of the calculated quantities, their limiting values...
-
Koncepcja i modelowanie wysokoobrotowego napędu elektrycznego turbosprężarki. Zastosowanie w ogniwach paliwowych pojazdów samochodowych
PublikacjaAbstract: Electrical vehicles powered by hydrogen fuel cells become a potential alternative to conventional vehicles. The polymer electrolyte membrane (PEM) are typical fuel cells used in fuel cell vehicle (FCV). The global efficiency of a PEM fuel cell stack is greatly impacted by the use of a motorized compressor for the air supply system. The motor-compressor set-up may consume up to 19 % of the energy supplied by the PEM fuel...
-
X-RAY DIFFRACTION STUDY OF BISMUTH LAYER-STRUCTURED MULTIFERROIC CERAMICS
PublikacjaGoal of the present research was to apply a solid state reaction route to fabricate bismuth layer-structured multiferroic ceramics described with the formula Bi5FeTi3O15 and reveal the influence of processing conditions on its crystal structure and phase composition. Simple oxide powders Bi2O3, TiO2 and Fe2O3 were used to fabricate Aurivillius-type bismuth layer-structured ferroelectrics. Pressureless sintering in ambient air was...
-
The Effect of Conjugation with Octaarginine, a Cell-Penetrating Peptide on Antifungal Activity of Imidazoacridinone Derivative
PublikacjaAcridine cell-penetrating peptide conjugates are an extremely important family of compounds in antitumor chemotherapy. These conjugates are not so widely analysed in antimicrobial therapy, although bioactive peptides could be used as nanocarriers to smuggle antimicrobial compounds. An octaarginine conjugate of an imidazoacridinone derivative (Compound 1-R8) synthetized by us exhibited high antifungal activity against reference...
-
MnCo2O4 deposited by spray pyrolysis as a protective layer for stainless steel interconects
PublikacjaStainless steel interconnects working in Solid Oxide Fuel Cells stacks are exposed to high temperature resulting in their corrosion. Protective layers for the hydrogen and oxygen sides are necessary to protect the interconnect material, prolongate the stack lifetime and maintain the output power. In this paper MnCo2O4 protective layer for the oxygen side of the interconnect is deposited by spray pyrolysis and is examined.
-
Karol Grębowski dr inż.
OsobyKarol Grębowski (dr inż.) pracuje jako adiunkt w Katedrze Technicznych Podstaw Projektowania Architektonicznego na Wydziale Architektury Politechniki Gdańskiej. Jego badania naukowe dotyczą zjawisk szybkozmiennych zachodzących podczas drgań konstrukcji budowlanych, obiektów mostowych (trzęsienia ziemi) oraz badania w zakresie metodologii projektowania budynków stanowiących system ochrony pasywnej (SOP) odpornych na uderzenia pojazdów...
-
Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer
PublikacjaIn this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement...
-
CeCu2O4 as a functional layer on solid oxide fuel cells for synthetic biogas reforming
PublikacjaSolid Oxide Fuel Cells (SOFC) are one of the most promising electrochemical devices, which can convert chemical energy to the electrical energy these days. Their ability to work with different kind of fuel makes them noteworthy. SOFC can work with biogas. The problem arises when solid carbon starts to be deposited in anode. That leads to degradation of fuel cell. Simple solution is to apply catalytic functional layer, which is...
-
Laser patterned platform with PEDOT–graphene composite film for NO2 sensing
PublikacjaThis work presents a simple and fully electrochemical route used for fabricating of a NO2 gas sensor made of reduced-graphene-oxide-poly(3,4-ethylenedioxythiophene) composite film. The sensing platform was fabricated from alumina substrate and equipped with gold interdigitated electrodes and built-in heater.The temperature distribution on the surface of interdigitated electrodes was investigated by a thermalimaging camera and compared...
-
Assestment of the anti-cancer activity of the copper complexes with imidazole and pivalato ligands
PublikacjaDespite the development of science and technology progress so far there have not been found effective drugs for cancer. Many coordination compounds were investigated due to their antitumor potential. The most known cis-diamminedichloroplatinum(II) is used as anti-cancer therapeutic agent. The copper complexes are the coordination compounds possessing anti-tumour properties. Their capability to kill cancer cells is mainly linked...
-
Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site
PublikacjaTetragonal polymorph of lanthanum orthoniobate can be stabilized to room temperature by the substitution of Nb with an isovalent element. LaNb1-xAsxO4 (0 < x ≤ 0.3), where As is an element stabilizing tetragonal structure, were successfully synthesized with combined co-precipitation and solid-state reaction method. The phase transition temperature, above which the material has tetragonal structure, decreases linearly with increasing...
-
Morphology changes in Fe-Cr porous alloys upon high-temperature oxidation quantified by X-ray tomographic microscopy
PublikacjaThe effect of high-temperature oxidation at 850 C (10 h, 30 h, 100 h) and 900 C (10 h) on porous (30 % porosity) ferritic stainless steel (Fe22Cr) has been investigated using synchrotron tomographic microscopy, which allowed for visualisation, separation and quantitative analysis of the metallic core, closed pores, open pores and oxide scale phase. The same regions within the samples were investigated before and after oxidation...
-
Hydrogen Embrittlement and Oxide Layer E ect in the Cathodically Charged Zircaloy-2
PublikacjaThe present paper is aimed at determining the less investigated effects of hydrogen uptake on the microstructure and the mechanical behavior of the oxidized Zircaloy-2 alloy. The specimens were oxidized and charged with hydrogen. The different oxidation temperatures and cathodic current densities were applied. The scanning electron microscopy, X-ray electron diffraction spectroscopy, hydrogen absorption assessment, tensile, and...
-
In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium
PublikacjaDespite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate...
-
Microsphere structure application for supercapacitor in situ temperature monitoring
PublikacjaConstant, real-time temperature monitoring of the supercapacitors for efficient energy usage is in high demand and seems to be crucial for further development of those elements. A fiber-optic sensor can be an effective optoelectronic device dedicated for in-situ temperature monitoring of supercapacitors. In this work, the application of the fiber-optic microstrucutre with thin zinc oxide (ZnO) coating fabricated in the atomic layer...
-
Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterization
PublikacjaWe report a systematic microstructural and electrical characterization of iron doped Mn–Co spinel coatings processed by electrophoretic co-deposition of Mn1.5Co1.5O4 and Fe2O3 powders on Crofer 22 APU and AISI 441 steel substrates. Iron addition to Mn–Co spinel coating leads to a reduction of the area specific resistance on both substrates, after 3200 h at 750 °C. The Fe doped Mn–Co coating both leads to a thinner oxide scale and...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublikacjaIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Photocatalytic degradation of acetaldehyde in high temperature reaction chamber
Dane BadawczeThis dataset contains chromatograms recorded during the decomposition of acetaldehyde in a high-temperature reaction chamber under UV irradiation using TiO2 (titanium dioxide) as photocatalysts. It includes data on the influence of flow rate, TiO2 (titanium dioxide) filling the entire reactor, a thin layer of TiO2 (titanium dioxide) supported on KBr...
-
Chemical composition of La-Sr-Ce-Ni-Ti ceramics material measured by XPS method
Dane BadawczeLa-Sr-Ce-Ni-Ti (LSCNT) based ceramics sample was manufactured by standard solid state reaction.Prepared powder was pressed into pilled and sintered in a furnace in air atmosphere for 10h. Annealing temperature was 1200 Celsius degree. To calculate chemical composition and determine valence states of the elements, X-Ray photoemission spectroscopy (XPS)...
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublikacjaThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
Structure and thermoelectric properties of Bi–Te alloys obtained by novel method of oxide substrates reduction
PublikacjaA novel method of thermoelectric materials fabrication has been developed. Oxide reagents have been melted at high temperature in air, quenched, milled to powder and reduced in hydrogen to form Bi–Te alloys. Structural and thermoelectric properties of samples have been investigated depending on initial composition and temperature of reduction process. Sample 25Bi2O3–75TeO2 reduced at 340 °C for 10 h has been found to be a p-type...
-
Potentiometric Oxygen Sensor with Solid State Reference Electrode
PublikacjaThe concentration or the partial pressure of oxygen in an environment can be determined using different measuring principles. For high temperature measurements of oxygen, ceramic-based sensors are the most practical. They are simple in construction, exploration and maintenance. A typical oxygen potentiometric sensor consists of an oxygen ion conducting solid electrolyte and two electrodes deposited...
-
Analysis of Ceramic Elements with Ring-Crack Defects in Lubricated Rolling Contact
PublikacjaThe properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. Surface ring cracks on lubricating rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculations...
-
Effect of the Post-Weld Surface Condition on the Corrosion Resistance of Austenitic Stainless Steel AISI 304
PublikacjaSurfaces of welded elements made of corrosion-resistant (stainless) steels develop temper colours. The removal of thickened oxide layers off steels exposed to temperatures below 300°C is necessary and entails the restoring of high corrosion resistance of the stainless steel. The article presents tests concerned with the effect of a method applied to remove post-weld temper on the corrosion resistance of austenitic stainless steel...
-
Effect of oxidation and in vitro intestinal hydrolysis on phospholipid toxicity towards HT29 cell line serving as a model of human intestinal epithelium
PublikacjaOxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used...
-
Thermoelectric properties of bismuth-antimony-telluride alloys obtained by reduction of oxide reagents
PublikacjaThe BieSbeTe alloys with different Bi/Sb/Te ratio were fabricated by an innovative method. For that purpose the oxide reagents were melted at high temperature, then quenched to form pellets, milled to a powder and finally reduced in hydrogen at various temperatures. Complex structures consisting of connected thin layers forming a continuous path between nano- and micrometer size grains have been obtained. The electrical conductivity,...
-
Influence of Heat Treatment Temperature on Fatigue Toughness in Medium-Carbon High-Strength Steels
PublikacjaCurrent research has demonstrated that the tempering temperature affects the martensitic transformation of medium-carbon high-strength steels. This temperature plays an important role in the final microstructure, percentage ratios of martensite to ferrite phases and, consequently, in the mechanical properties and the fatigue response. So far, the relationship between the martensitic tempering temperature and the cyclic deformation...
-
High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air
PublikacjaIn this study, SUS430 alloy is evaluated for its high temperature corrosion properties as a possible material for interconnects of solid oxide fuel cells (SOFCs). Samples are coated with Mn-Co by commercial physical vapor deposition (PVD) process and oxidized in air for 1250 h at 800 °C. A dense cubic Mn-Co-Fe spinel layer is formed on the surface, showing great effect on corrosion reduction compared with the samples without coating....
-
Comparison of low-temperature cracks intensity on pavements with high modulus asphalt concrete and conventional asphalt concrete bases
PublikacjaHigh modulus asphalt concrete (HMAC) base courses provide very good resistance to rutting and fatigue but they can increase the risk of low-temperature cracking as compared with conventional asphalt concrete (AC). The article presents the comparison of these two road materials in terms of low-temperature cracking. The statistical method based on the ordered logistic regression model was used. The analysis was based on results of...
-
Numerical analysis of crack propagation in silicone nitride
PublikacjaThe properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. The influence of ring crack size on rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculation...
-
High Temperature Corrosion Evaluation of Porous Hastelloy X Alloy in Air and Humidified Hydrogen Atmospheres
PublikacjaIn this work a commercially available porous Hastelloy X alloy is characterized in terms of high temperature corrosion resistance. The alloy was oxidized in the temperature range from 500C to 900C in air and humidified hydrogen for 100 hours. Corrosion rates and porosity changes were measured. Microstructural characterization was performed using X-ray diffractometry and scanning electron microscopy. Results show that porous alloys...
-
Laboratory Determination of Burger's Model Parameters for Visco-elastic Analysis of Road Pavement Materials
PublikacjaBurger's Model is one of those models that describes performance of asphalt mixtures. Its parameters can be used in road construction analysis based on visco-elastic properties in wide variety of temperatures using dedicated programs (e.g. Veroad) or in Finite Element Method (FEM). Parameters of Burger's Model can be used for example in prediction of low temperature cracking in low winter temperatures or permanent deformation...
-
Morphology and the physical and thermal properties of thermoplastic polyurethane reinforced with thermally reduced graphene oxide
PublikacjaIn this study, thermally reduced graphene oxide (TRG)-containing polyurethane nanocomposites were obtained by the extrusion method. The content of TRG incorporated into polyurethane elastomer systems equaled 0.5, 1.0, 2.0 and 3.0 wt%. The morphology, static and dynamic mechanical properties, and thermal stability of the modified materials were investigated. The application of TRG resulted in a visible increase in material stiffness...
-
Oxidation and hydrogen behavior in Zr-2Mn alloy
PublikacjaThe purpose of the present research was to determine the oxidation and hydrogenation behavior in the new Zr-2Mn alloy. The oxidation of alloy was performed at temperatures between 350°C and 900°C for 30 minutes. The hydrogen charging was made for 72 h at a current density 80 mA/cm2. The charged samples were heat treated at 400°C for 4 h to obtain a uniform hydrogen profile content across the sample. The oxidation resulted in an...
-
CuMn1.7Fe0.3O4 – RE2O3 (RE=Y, Gd) bilayers as protective interconnect coatings for Solid Oxide Cells
PublikacjaEfficient replacement of materials based on critical elements such as cobalt is one of the greatest challenges facing the field of solid oxide cells. New generation materials, free of cobalt show potential to replace conventional materials. However, these materials are characterized by poor ability to block chromium diffusion. This article described the study of CuMn1.7Fe0.3O4 (CMFO) spinel combined with single metal oxide (Y2O3...
-
Study of the influence of thermal factors on the welding process of polyethylene gas pipelines,
PublikacjaA one-dimensional calculation scheme is proposed with the help of which it is possible to determine and set the technological parameters with the accuracy to be realized in production conditions: the temperature of the heating element and the heating time, which allows maximum mechanization of the technological operations of polyethylene gas pipelines welding. The numerical value of the coefficient of temperature for polyethylene...
-
The electrochemical impedance spectroscopy studies of the anode material based on polymer and starch derived ceramic for lithium ion batteries
PublikacjaThe anode materials derived of preceramic polymer poly(1,2-dimethylsilazane) (PSN) and starch was study. Commercially available polysilazane (poly(1,2-dimethylsilazane (PSN 2M01 Gelest) was mixed with commercially available starch (POCH Gliwice). The ratio polymer/starch (PSN/starch) was 1/1 or 3/7. The polysialazane/starch blend was cross-linked at 230 ºC for 2 h followed by heating to the final temperature (500 ºC, 700 ºC and...