Wyniki wyszukiwania dla: HIGH-MODULUS ASPHALT CONCRETE
-
Evaluation of the resistance of steel–concrete adhesive connection in reinforced concrete beams using guided wave propagation
PublikacjaThe development of the nondestructive diagnostic methods is of significant importance in the last decades. A special attention is paid to diagnostics of reinforced concrete structures, which are very popular in the civil engineering field. A possible use of the guided waves in the estimation of the resistance of steel–concrete adhesive connection is studied in the following paper. The relationships relating adhesive connection...
-
Aspects of intergranular corrosion of AISI 321 stainless steel in high-carbon-containing environments
PublikacjaPurpose – The purpose of this paper is to present a case study of unexpected sensitization to intergranular corrosion of highly resistant AISI 321 steel in petrochemical conditions, where it was subjected to the simultaneous influence of elevated temperature of 250°C and vapors from the asphalt production process. Design/methodology/approach – Corrosion coupons were exposed in an installation carrying asphalt vapors. To identify...
-
GPR investigation of the strengthening system of a historic masonry tower
PublikacjaIn this paper the condition assessment of the strengthening system of a masonry tower was carried out by the GPR method. The study provided unique experimental data acquired during measurements of the reinforced concrete frame embedded in masonry walls. Conducted numerical and experimental investigations were focused on the phenomenon of the diffraction-refraction scattering of the electromagnetic energy. A hyperbola resulting...
-
Formation of Porous Structure of the Metallic Materials Used on Bone Implants
PublikacjaResearch on improvement of structure and fabrication methods of the bone implants are carried out for many years. Research are aimed to shape the structures, that will have a Young's modulus value similar to the value of the human bones Young's modulus. Depending on theporosity, Young's moduli can even be tailored to match the modulus of bone closer than solid metals can, thus reducing the problems associated with stress shielding...
-
Modelling hydraulic and capillary-driven two-phase fluid flow in unsaturated concretes at the meso-scale with a unique coupled DEM-CFD technique
PublikacjaThe goal of the research was to demonstrate the impact of thin porous interfacial transition zones (ITZs) between aggregates and cement matrix on fluid flow in unsaturated concrete caused by hydraulic/capillary pressure. To demonstrate this impact, a novel coupled approach to simulate the two-phase (water and moist air) flow of hydraulically and capillary-driven fluid in unsaturated concrete was developed. By merging the discrete...
-
Study of the Resistance to Influence of Aggressive Liquids on Concrete with Lightweight Aggregate
PublikacjaThe corrosion of the structure of concrete caused by the aggressive external environment is one of the main problems that can reduce the durability of buildings. The paper analyzes the influence of the type of component on selected properties of lightweight concrete (LWC) exposed to aggressive liquids. When lightweight concrete containing porous aggregates is used, the influence of an aggressive environment may be of particular...
-
Determination of binder-aggregate adhesion by contact angle measurement
PublikacjaThe key factor in asphalt pavement durability, especially in the presence of water, is adhesion of the bituminous binder to mineral aggregates. There are currently no standard laboratory test procedures that can quickly and accurately measure the strength of the interaction (bond) between the binder and aggregate. In this regard, to evaluate the adhesion force measurements based on the contact angle between the binder and the aggregate...
-
Cure kinetics of epoxy/MWCNTs nanocomposites: Nonisothermal calorimetric and rheokinetic techniques
PublikacjaNonisothermal calorimetric and isothermal rheokinetic analyses were used to study cure kinetics of epoxy/anhydride systems containing very low concentration of pristine and amine-functionalized multiwalled carbon nanotubes (MWCNTs). Isoconversional methods were applied in calorimetric modeling of cure kinetics. Eα vs. α dependency and autocatalytic nature of curing were identified for both types of nanocomposites by isoconversional...
-
Mechanical properties of VL E27 steel for shipbuilding – tensile test in +20°C, elastic modulus
Dane BadawczeOne of the basic divisions of steels used for ship hulls and ocean engineering structures is the division into: normal strength steels, high strength steels and extra high strength steels. The belonging to the group is determined by the mechanical properties of the steel, such as: yield point, ultimate strength and plastic elongation after fracture....
-
Pore Water Pressure Development in Soft Soil due to Installation and Loading of Controlled Modulus Columns
PublikacjaExcess pore water pressure (EPWP) development and decay due to the installation and static loading tests of controlled modulus columns (CMC) in soft soil was measured with piezometers equipped with low air entry (LAE) filters and a piezocone (CPTU) equipped with a high air entry (HAE) filter. The HAE filter allows for detailed detection of EPWP in short time intervals during construction of CMC. The influence zone due to the installation...
-
Polish experience with cold in-place recycling
PublikacjaDeep cold in-place recycling using cement and asphalt emulsion has been used for reconstruction of existing roads since the beginning of the 1990s. This paper describes the first Polish requirements for mineral-cement-emulsion mixtures. As requirements stated for the strength of the mineral-cement-emulsion mixtures were quite high, most of the mixtures were designed using high amount of cement and aggregate added for the improvement...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on protective foil using 2-wire probe 48h exposition
Dane BadawczeThe dataset presents impedance spectrum of anticorrosion foil (coating) protecting aluminium frame . This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on protective foil using 2-wire probe 24h exposition
Dane BadawczeThe dataset presents impedance spectrum of anticorrosion foil (coating) protecting aluminium frame . This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole...
-
A material model of asphalt mixtures based on Monte Carlo simulations
PublikacjaThe paper aims to numerically reflect mineral-asphalt mixture structure by a standard FEM software. Laboratory test results are presented due to bending tests of circular notched elements. The result scatter is relatively high. An attempt was made to form a random aggregate distribution in order to obtain various results corresponding to laboratory tests. The material structure calibration, its homogenization and finite element...
-
Investigations of Titanium Implants Covered with Hydroxyapatite Layer
PublikacjaTo reduce unfavorable phenomena occurring after introducing an implant into human body various modifications of the surface are suggested. Such modifications may have significant impact on biocompatibility of metallic materials. The titanium and it's alloys are commonly used for joint and dental implants due to their high endurance, low plasticity modulus, good corrosion resistance as well as biocompatibility. Special attention...
-
Cost-Effective and Sufficiently Precise Integration Method Adapted to the FEM Calculations of Bone Tissue
PublikacjaThe technique of Young’s modulus variation in the finite element is not spread in biomechanics. Our future goal is to adapt this technique to bone tissue strength calculations. The aim of this paper is to present the necessary studies of the element’s integration method that takes into account changes in material properties. For research purposes, a virtual sample with the size and distribution of mechanical properties similar...
-
Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy
PublikacjaTitania-based films on selective laser melted Ti13Zr13Nb have been formed by micro-arc oxidation (MAO) at different process parameters (voltage, current, processing time) in order to evaluate the impact of MAO process parameters in calcium and phosphate (Ca + P) containing electrolyte on surface characteristic, early-stage bioactivity, nanomechanical properties, and adhesion between the oxide coatings and substrate. The surface...
-
3-D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures
PublikacjaThis paper presents numerical and experimental investigations to identify reinforcing bars using the ground penetrating radar (GPR) method. A novel element of the paper is the inspection of different arrangements of reinforcement bars. Two particular problems, i.e. detection of few adjacent transverse bars and detection of a longitudinal bar located over or under transverse reinforcement, have been raised. An attention was also...
-
Impact response of two-layered grouted aggregate fibrous concretecomposite under falling mass impact
PublikacjaTwo-layered Grouted Aggregates Fibrous Concrete Composite (TGAFCC) is a new category concrete which became popular recently and attracted the attention of researchers globally. Recent studies indicated that TGAFCC has notable improvement in mechanical properties, which has been sufficiently documented. However, the impact behaviour of TGAFCC when combined with Glass Fibre Mesh (GFM) and Textile Fibre Mesh (TFM) is still unexplored....
-
Sensitivity analysis of a composite footbridge
PublikacjaThis work include an example of sensitivity analysis for the design of a composite footbridge. A sandwich structure is used, consisting two high-strength skins separated by a core material. The analysis was conducted for two numerical models. The first one is a simple, single-span beam of a composite cross-section (laminate and foam), with different Young’s modulus for each material. Calculations were made by means of a MATLAB-based...
-
Performance Evaluation of Asphalt Binder Modified with Shear Thickening Fluid
PublikacjaThis paper aims at using a dilatant or shear thickening fluid (STF) [a non-Newtonian fluid consisting of particles of nano-silica suspended in a liquid medium, i.e., ethylene glycol (EG), which acts as a carrier fluid; proportion 40:60] as additive or modifier of bitumen in order to enhance its viscoelastic properties. A commonly-used performance grading (PG) system, storage stability test, and different conventional and rheological...
-
Mechanical Properties of Twisted Carbon Nanotube Bundles with Carbon Linkers from Molecular Dynamics Simulations
PublikacjaThe manufacturing of high-modulus, high-strength fibers is of paramount importance for real-world, high-end applications. In this respect, carbon nanotubes represent the ideal candidates for realizing such fibers. However, their remarkable mechanical performance is difficult to bring up to the macroscale, due to the low load transfer within the fiber. A strategy to increase such load transfer is the introduction of chemical linkers...
-
Numerical analysis of lumbar spine injury during road safety barrier collision
PublikacjaPurpose: Enhancing road safety is a critical goal worldwide, necessitating the development of clear standards for road safety systems. This study focuses on lumbar spine (L-spine) compression injuries during collisions with concrete road safety barriers (RSBs). It aims to analyze internal forces during impact to understand L-spine injury biomechanics in such accidents. Methods: The research included a literature review, analyzing...
-
RMS-based damage identification in adhesive joint between concrete beam and steel plate using ultrasonic guided waves
PublikacjaAdhesive joints have numerous applications in many branches of industry, such as civil engineering, automotive, aerospace and shipbuilding. As with most structural elements, adhesive joints can experience any damage mechanism, which induces the need for diagnostic testing. Ultrasonic waves are widely used for non-destructive inspection of many structures and their elements, including adhesive joints. Guided wave propagation method...
-
Effect of Chitosan Solution on Low-Cohesive Soil’s Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests
PublikacjaIn this study the effect of using a biopolymer soil stabilizer on soil stiffness characteristics was investigated. Chitosan is a bio-waste material that is obtained by chemical treatment of chitin (a chemical component of fungi or crustaceans’ shells). Using chitosan solution as a soil stabilizer is based on the assumption that the biopolymer forms temporary bonds with soil particles. What is important is that these bonds are biodegradable,...
-
Tyre/road noise reduction of poroelastic road surface tested in a laboratory
PublikacjaA so-called poroelastic road surface (PERS) is being developed in Europe. This contains a large percentage of rubber particles mixed with hard aggregate (stone and sand) and bound with polyurethane. This gives high air void content (around 30 %), high elasticity and smooth texture, all of which should give low noise properties. Inthis experiment anominally 30 mm thick sample of PERS was mounted on a steel drum. Various car tyres...
-
Lightweight structures in architecture: scenarios for the future
PublikacjaLightweight structures - structures with a reduced weight, which otherwise retain the qualities necessary for the building performance, ensuring a proper durability and strength, safety, indoor environmental quality and energy efficiency; stuctures which strive for the optimization of structural systems - are in tune with current trends and socio-economic, environmental and technological factors. The growing interest in the lightweight...
-
DYNAMIC ANALYSIS OF THE RAILWAY BRIDGES IN POLAND WITH REGARDS TO HIGH-SPEED TRAINS PASSAGE ADJUSTMENT
PublikacjaThe dynamic analysis of the railway bridge in Tczew was carried out in the article as an example of such bridges adaptation suitability to handle high-speed trains. Calculations of railway bridges are greatly complicated and labor-consuming. The bridge model and a rolling stock passage simulation were developed in the SOFISTIK software. Three types of elements were used for the correct mapping of the structure in the calculation...
-
The vibration-based assessment of the influence of elevated temperature on the condition of concrete beams with pultruded GFRP reinforcement
PublikacjaConcrete beams reinforced with glass fiber reinforced polymer (GFRP) bars subjected to elevated temperature have been experimentally studied. The influence of high temperatures on GFRP-reinforced concrete beams condition has been check both, destructively and nondestructively. The nondestructive tests foresaw vibration-based tests to obtain the natural frequency values after exposure to varying temperatures. The vibration-based...
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublikacjaLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
The impact of material degradation on the resistance and reliability of truss structures
PublikacjaThe paper analyses limit load-carrying capacity and buckling load of truss towers used to support high voltage power lines. The analysed typical structure was subjected to characteristic loads and their combinations. The results were applied to assess structural resistance with regard to steel corrosion in the long-term operation. The extent of structural deterioration was assessed due to Young's modulus decrement in the course...
-
Measurements of the Hydraulic Fluids Compressibility
PublikacjaPerformance of the hydrostatic high-pressure drive systems is affected by the changes of working fluid’s volume. Presence of air bubbles in the fluid cause this problem to be even more serious. To study this phenomenon precise measurements of fluid’s bulk modulus are necessary. Differ-ent measurement methods are applied, but they are either limited to low pressure range or give inaccurate results. To solve the problem the new...
-
Local impedance imaging of boron-doped polycrystalline diamond thin films
PublikacjaLocal impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm−3. The BDD films displayed microcrystalline structure,...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublikacjaThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling
PublikacjaThis paper examines the stiffness degradation and interface failure load on soft soil–concrete interface. The friction behavior and its variability is investigated. The direct shear tests under constant normal load were used to establish parameters to hyperbolic interface model which provided a good approximation of the data from instrumented piles. Four instrumented piles were used to obtain reference soil–concrete interface behavior....
-
Influence of Sn and Pb Ions Substitutions on Dielectric Properties of Barium Titanate
PublikacjaThe results of the microstructural and dielectric measurements of (Ba1-xPbx)(Ti1-xSnx)O3 (BPTSx) (x = 0, 0.05, 0.10, 0.30) polycrystalline samples are presented. The samples were obtained by means of a high temperature synthesis and their expected stoichiometry was confirmed by energy dispersive spectroscopy (EDS) measurements. The dielectric properties of BPTSx were studied with the use of broadband dielectric spectroscopy. The...
-
Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers
PublikacjaGreen thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching;...
-
Improving Thermal Insulation Properties for Prefabricated Wall Components Made of Lightweight Aggregate Concrete with Open Structure
PublikacjaPorous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. An extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets....
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Influence of separation gap on the structural response of colliding structures under earthquake excitation
PublikacjaThe high level of urbanization in the XXIst century forces the designers to design closely-separated structures and to take into account many factors influencing their response during seismic excitation, which are the most unpredictable loads which can affect civil engineering structures. Interactions between insufficiently adjacent buildings, known as the earthquake-induced structural pounding, may cause serious damage to the structures,...
-
High frequency impulse ground penetrating radar application in assessment of interlayer connections
PublikacjaGround Penetrating Radar (GPR) technique is commonly used in the nondestructive evaluation of pavement structures. In particular, this method is used to estimate thicknesses of pavement layers as well as it can be utilized in advanced studies of pavement structures. The device presented in this paper comprise the high frequency impulse antennas that allow for investigating the interlayer zones in terms of their electromagnetic...
-
Soil-structure interaction effects on modal parameters of office buildings with different number of stories
PublikacjaThe paper summarizes the results of a numerical investigation designed to study the soil-structure interaction effects on modal parameters of three office buildings. The reinforced-concrete 4-storey, 8-storey, and 12-storey office buildings, each with additional two levels of embedded basements, represent low, medium, and high-rise structures, respectively. In order to conduct this research, detailed finite-element structure models...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublikacjaFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Building Information Modelling as an opportunity and risk for stakeholders involved in construction investment process
PublikacjaThe requirements to apply Building Information Modelling (BIM) in public investments worldwide are currently very high. Significant interest (sometimes formulated also as a requirement) in BIM technology can be observed also among private investors. Design technology that applies BIM is supported by many private investors due to its numerous advantages. A growing group of construction designers (steel, concrete and reinforced concrete...
-
Influence of Fluid Compressibility and Movements of the Swash Plate Axis of Rotation on the Volumetric Efficiency of Axial Piston Pumps
PublikacjaThis paper describes the design of a swash plate axial piston pump and the theoretical models describing the bulk modulus of aerated and non-aerated fluids. The dead space volume is defined and the influence of this volume and the fluid compressibility on the volumetric efficiency of the pump is considered. A displacement of the swash plate rotation axis is proposed to reduce the dead space volume for small swash plate swing angles....
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublikacjaIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
Fast High-Impedance Spectroscopy Method Using SINC Signal Excitation
PublikacjaIn this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| > 1 Gohm) is evaluated by means of simulation and practical experiment. The method is based on excitation of an object with a sinc signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance spectrum is obtained with use of continuous Fourier transform...
-
Bio-Based Polyurethane Networks Derived from Liquefied Sawdust
PublikacjaThe utilization of forestry waste resources in the production of polyurethane resins is a promising green alternative to the use of unsustainable resources. Liquefaction of wood-based biomass gives polyols with properties depending on the reagents used. In this article, the liquefaction of forestry wastes, including sawdust, in solvents such as glycerol and polyethylene glycol was investigated. The liquefaction process was carried...
-
Copper Slag as a Potential Waste Filler for Polyethylene-Based Composites Manufacturing
PublikacjaThe present study aimed to analyze the application of waste material from copper production– copper slag (ŻŻL) as filler for composites based on the high-density polyethylene (HDPE). Copper slag filler was introduced in the amounts of 1–20 wt%, and its influence on the appearance (color analysis), chemical structure (Fourier-transform infrared (FTIR) spectroscopy), microstructure (optical microscopy), as well as static (tensile...
-
INSIGHTS INTO THE PROCESSING, STRUCTURE, AND MECHANICAL PERFORMANCE OF POLYETHYLENE/GYPSUM COMPOSITES
PublikacjaPolymer composites are used in all branches of industry, with numerous applications. Despite the many years of modifying commodity polymers, using novel fillers allows the range of their applicability to be extended. The impact of new types of fillers on the polymer matrix is not always predictable and requires further studies. The presented study analyzed the application of gypsum as a filler for composites based on high-density...