Filtry
wszystkich: 1643
-
Katalog
- Publikacje 1343 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 69 wyników po odfiltrowaniu
- Osoby 66 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 40 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 70 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, CNN, NEURAL NETWORKS, OPTIMIZATION ALGORITHMS
-
Swarm Algorithms in Modern Engineering Optimization Problems
PublikacjaComplexity of today engineering problems is constantly increasing. Scientists no longer are facing issues, for which simple, mathematical programming methods are sufficient. Issues like autonomic vehicle navigation or classification are considered to be challenging, and although there exist valid means to solve them, in some cases there still is some place for improvement. With emergence of a new type of optimization techniques...
-
Global Miniaturization of Broadband Antennas by Prescreening and Machine Learning
PublikacjaThe development of contemporary electronic components, particularly antennas, places significant emphasis on miniaturization. This trend is driven by the emergence of technologies such as mobile communications, the internet of things, radio-frequency identification, and implantable devices. The need for small size is accompanied by heightened demands on electrical and field properties, posing a considerable challenge for antenna...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring
PublikacjaThe objective of this study is to develop and assess a mobile application that leverages artificial intelligence (AI) to support the rehabilitation of individuals with facial nerve paralysis. The application features two primary functionalities: assessing the paralysis severity and facilitating the monitoring of rehabilitation exercises. The AI algorithm employed for this purpose was Google's ML Kit “face-detection”. The classification...
-
Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel
PublikacjaIn the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....
-
Solving the Problem of Dynamic Adaptability of Artificial Intelligence Systems that Control Dynamic Technical Objects
PublikacjaThis paper investigates the increase in the response speed and stability of artificial intelligence systems that control dynamic technical objects. The problem of calculating the optimal time of switching an artificial intelligence system between software classes by the criterion of the rigidity degree of the model of a control object is considered. The solution of this problem is proposed for the general case of the control object...
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublikacjaThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Parameters optimization in medicine supporting image recognition algorithms
PublikacjaIn this paper, a procedure of automatic set up of image recognition algorithms' parameters is proposed, for the purpose of reducing the time needed for algorithms' development. The procedure is presented on two medicine supporting algorithms, performing bleeding detection in endoscopic images. Since the algorithms contain multiple parameters which must be specified, empirical testing is usually required to optimise the algorithm's...
-
Human System Interaction in Review: Advancing the Artificial Intelligence Transformation
PublikacjaThe industrial advancement of human society has been fundamentally driven by diverse ‘systems’ that facilitate ‘human interaction’ within physical, digital, virtual, social and artificial environments, and upon the hyper-connected layers of system-system interactions across these environments. The research and practice of Human System Interaction (HSI) has undergone exponential development due to the enhanced capabilities, increased...
-
Introduction to the special issue on machine learning in acoustics
PublikacjaWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
Artificial intelligence in architectural education - green campus development research
PublikacjaThe rapid advancement of artificial intelligence (AI) technologies has introduced new possibilities and challenges in design education. This article explores the need for changes and adaptations in the teaching process of design as AI-related technologies, based on image generation, transform the creative process and offer novel opportunities. In a research-by-design studio in an architectural faculty in Poland, students who utilised...
-
Employment of University Graduates in the Era of Digitalization and Artificial Intelligence: Challenges and Prospects
PublikacjaDigital technologies are profoundly reshaping the labor market, causing structural shifts in the economy and altering the nature of work. These changes have significant implications for youth employment, exacerbating the issue of unemployment. This paper delves into the importance of graduate employment in contemporary society, with a particular focus on the influence of digital technologies and Artificial Intelligence. The authors...
-
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publikacja -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publikacja -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publikacja -
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publikacja -
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
Artificial i business intelligence w zarządzaniu procesem logistycznym organizacji gospodarczej
PublikacjaW rozdziale zaprezentowano założenia reengineeringu procesu logistycznego zarządzania rezerwą awaryjną majątku sieciowego. Reengineering procesu polega na określeniu docelowej struktury organizacyjnej, zaprojektowaniu procedur organizacyjnych, określeniu optymalnych wielkości zapasów poszczególnych pozycji majątku sieciowego z uwzględnieniem ich przestrzennego rozmieszczenia na terytorium Spółki oraz zaprojektowaniu założeń systemu...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
COVID-19 severity forecast based on machine learning and complete blood count data
PublikacjaProper triage of COVID-19 patients is a key factor in eective case management, especially with limited and insucient resources. In this paper, we propose a machine-aided diagnostic system to predict how badly a patient with COVID-19 will develop disease. The prognosis of this type is based on the parameters of commonly used complete blood count tests, which makes it possible to obtain data from a wide range of patients.We chose...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublikacjaThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Performance Evaluation of Preemption Algorithms in MPLS Networks
PublikacjaPreemption is a traffic engineering technique in Multiprotocol Switching Networks that enables creation of high priority paths when there is not enough free bandwidth left on the route. Challenging part of any preemption method is to select the best set of paths for removal. Several heuristic methods are available but no wider comparison had been published before. In this paper, we discuss the dilemmas in implementing preemption...
-
MACHINE LEARNING
Czasopisma -
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublikacjaCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publikacja -
A Case Study of Electric Vehicles Load Forecasting in Residential Sector Using Machine Learning Techniques
PublikacjaElectric vehicles (EVs) have been widely adopted to prevent global warming in recent years. The higher installation of Level-1 and Level-2 chargers in residential areas soon poses challenges to the distributed network. However, such challenges can be mitigated through the adoption of smart charging or controlled charging schemes. To facilitate the implementation of smart charging, accurate forecasting of EV charging demand in residential...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublikacjaThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
Machine learning approach to packaging compatibility testing in the new product development process
PublikacjaThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Bożena Kostek prof. dr hab. inż.
Osoby -
IEEE Transactions on Neural Networks and Learning Systems
Czasopisma -
Deep neural networks for data analysis 27/28
Kursy Online -
Deep neural networks for data analysis 25/26
Kursy Online -
Deep neural networks for data analysis 26/27
Kursy Online -
Application of artificial neural networks (ANN) as multiple degradation classifiers in thermal and flow diagnostics
PublikacjaPrzedyskutowano problem zwiększenia dokładności rozpoznawania wielokrotnych degradacji eksploatacyjnych urządzeń składowych dużych obiektów energetycznych. Zastosowani sieć neuronową (SSN) o skokowych funkcjach przejścia. Sprawdzono możliwości przyspieszenia treningu sieci neuronowych. Zastosowano modułową metodę budowy SSN, polegającą na dedykowaniu pojedynczej sieci do rozpoznawania tylko jednego typu degradacji.
-
Accidental wow defect evaluation using sinusoidal analysis enhanced by artificial neural networks
PublikacjaArtykuł przedstawia metodę do wyznaczania charakterystyki pasożytniczych modulacji częstotliwości (kołysanie) obecnych w archiwalnych nagraniach dźwiękowych. Prezentowane podejście wykorzystuje śledzenie zmian sinusoidalnych komponentów dźwięku które odzwierciedlają przebieg kołysania. Analiza sinusoidalna wykorzystana jest do ekstrakcji składowych tonalnych ze zniekształconych nagrań dźwiękowych. Dodatkowo, w celu zwiększenia...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublikacjaThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
Artificial intelligence and productivity: global evidence from AI patent and bibliometric data
PublikacjaIn this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern productivity...
-
Optimization of Wireless Networks for Resilience to Adverse Weather Conditions
PublikacjaIn this chapter, we consider how adverse weather conditions such as rain or fog affect the performance of wireless networks, and how to optimize these networks so as to make them robust to these conditions. We first show how to analyze the weather conditions in order to make them useful for network optimization modelling. Using an example realistic network, we show how to optimize two types of wireless networks: free-space optical...
-
Real and Virtual Instruments in Machine Learning – Training and Comparison of Classification Results
PublikacjaThe continuous growth of the computing power of processors, as well as the fact that computational clusters can be created from combined machines, allows for increasing the complexity of algorithms that can be trained. The process, however, requires expanding the basis of the training sets. One of the main obstacles in music classification is the lack of high-quality, real-life recording database for every instrument with a variety...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublikacjaAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Civil liability for artificial intelligence products versus the sustainable development of CEECs: which institutions matter?
PublikacjaThe aim of this paper is to conduct a meta-analysis of the EU and CEECs civil liability institutions in order to find out if they are ready for the Artificial Intelligence (AI) race. Particular focus is placed on ascertaining whether civil liability institutions such as the Product Liability Directive (EU) or civil codes (CEECs) will protect consumers and entrepreneurs, as well as ensure undistorted competition. In line with the...
-
Artificial intelligence and productivity: global evidence from AI patent and bibliometric data .
PublikacjaIn this paper we analyse the relationship between technological innovation in the artificial intelligence (AI) domain and macroeconomic productivity. We embed recently released data on patents and publications related to AI in an augmented model of productivity growth, which we estimate for the OECD countries and compare to an extended sample including non-OECD countries. Our estimates provide evidence in favour of the modern...
-
Autonomous port management based AGV path planning and optimization via an ensemble reinforcement learning framework
PublikacjaThe rapid development of shipping trade pushes automated container terminals toward the direction of intelligence, safety and efficiency. In particular, the formulation of AGV scheduling tasks and the safety and stability of transportation path is an important part of port operation and management, and it is one of the basic tasks to build an intelligent port. Existing research mainly focuses on collaborative operation between...