Filters
total: 901
filtered: 849
Search results for: CONTINUUM FINITE ELEMENT ANALYSIS
-
The Influence of Selected Parameters of Numerical Modelling on Strains and Stresses at Weld Toe Notch
PublicationLatest development in the field of welding technology and prefabrication enabled massive production of thin-walled sandwich structures. Multi-layered sandwich structures are fabricated with the use of high-power CO2 lasers, friction welding, arc welding, hybrid welding, or other technique designed for the special purpose. Steel or aluminium alloy plates with thickness between 1 and 5 mm are connected by internal stiffeners. Strength...
-
Investigation of buckling resistance of columns using non-linear static and dynamic analysis
PublicationThe aim of this paper is to investigate the stability process in an axially compressed column using a static and dynamic finite element analysis by taking both the geometric and material non-linearity into account. The perfect column and column with geometric imperfections were analysed. The linear buckling analyses were used to obtain the lowest buckling load and shapes of buckled forms that were taken into account as initial...
-
Modelling of high frequency dynamic responses of engineering structures
PublicationModelling of high frequency dynamic responses of engineering structures, especially those related to wave propagation, is a real numerical challenge. Nowadays most of numerical models, used for that purpose, are based on the application of various finite element techniques. However, finite element discrete models may also be considered as possessing certain periodic structures, which may manifest themselves in particular scenarios....
-
Excavation induced cast iron pipeline failure – a numerical study
PublicationNumerical study on impact of an unsecured excavation on an underground pipeline. Analysis focused on investigation of pipeline displacement generated by soil movement caused by excavation and heavy traffic. Numerical calculations and soil parameter sensitivity analysis based on Finite Element Method. Some comparisons of results with real-life failure cases.
-
Laplace domain BEM for anisotropic transient elastodynamics
PublicationIn this paper, we describe Laplace domain boundary element method (BEM) for transient dynamic problems of three-dimensional finite homogeneous anisotropic linearly elastic solids. The employed boundary integral equations for displacements are regularized using the static traction fundamental solution. Modified integral expressions for the dynamic parts of anisotropic fundamental solutions and their first derivatives are obtained....
-
Geometrically nonlinear analysis of shells - Benchmark problems for Autocad Robot Analysis Professional
PublicationThe aim of this work is to verify the suitability of commercial engineering software for geometrically nonlinear analysis of shells. This paper deals with the static, geometrically nonlinear analysis of shells made of an isotropic material. The Finite Element Method (FEM) is chosen to solve the problem. The results of the commercial software Autocad Robot Structural Analysis Professional (ARSAP) are compared with the litera-ture...
-
Analysis of Ceramic Elements with Ring-Crack Defects in Lubricated Rolling Contact
PublicationThe properties of ceramics, specifically low density, high hardness, high temperature capability and low coefficient of thermal expansion are of most interest to rolling element manufacturers. Surface ring cracks on lubricating rolling contact fatigue failure has been studied using numerical fracture analysis. Such cracks are very often found on ceramic bearing balls and decrease fatigue life rapidly. The numerical calculations...
-
A 3D-FEM mesh technique for fast analysis of waveguide problems containing rotatable tuning elements
PublicationIn this paper a meshing technique for 3D Finite Element Method is presented. It allows for fast analysis and optimization of the waveguide structures, which contain rotatable tuning elements. In the proposed procedure a thin layer of varying cylindrical mesh buffer is introduced in order to reuse unchanged mesh and FEM matrices in the rest of the domain.
-
An Efficient Simulation Method of Massive MIMO Antenna Arrays used in 5G Mobile Phones
PublicationThis paper deals with a model-order reduction method, applied to speed-up the simulations of MIMO antenna arrays, performed by means of finite element method. The obtained results of the numerical tests show that the described technique is reliable and considerably increases the efficiency of the standard finite element method.
-
Mechanics of Micro- and Nano-Size Materials and Structures
PublicationNanotechnology knowledge is always looking to expand its boundaries to achieve the mostsignificant benefit to human life and meet the growing needs of today. In this case, we can refer tomicro- and nanosensors in micro/nano-electromechanical systems (MEMS/NEMS). These electricaldevices can detect minimal physical stimuli up to one nanometer in size. Today, micro/nano-sensordevices are widely used in the...
-
A simplified model of 3-D pipe system conveying flowing liquid
PublicationThe paper presents a model reduction technique of a 3-D pipe system with flowing liquid. In the analysis and design of control (mechatronic) systems it is useful to work with simple, low order models. A hybrid reduced order model is proposed. The system model consists of two parts, the modal model and the finite element model.
-
A selectively reduced degree basis for efficient mixed nonlinear isogeometric beam formulations with extensible directors
PublicationThe effect of higher order continuity in the solution field by using NURBS basis function in isogeometric analysis (IGA) is investigated for an efficient mixed finite element formulation for elastostatic beams. It is based on the Hu–Washizu variational principle considering geometrical and material nonlinearities. Here we present a reduced degree of basis functions for the additional fields of the stress resultants and strains...
-
A study on transverse shear correction for laminated sandwich panels
PublicationThe paper presents a study on an application of the First Order Shear Deformation Theory in a linear static analysis of elastic sandwich panels. A special attention has been given to the issue of the transverse shear correction. Two benchmark examples of sandwich plate problems with known reference solutions have been selected for a comparative analysis performed with own Finite Element codes. Interesting results allowed for drawing...
-
Efficient analysis of structures with rotatable elements using model order reduction
PublicationThis paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the...
-
A new prototype of piezoelectric bending resonant transducer for analysis of soft tissues properties
PublicationThis paper is devoted to a new piezoelectric bending resonant transducer prototype dedicated to the characterization of the mechanical properties of soft tissue. A general description of the actuator’s structure is presented including the basic principles of the measurement. The chosen geometry of the prototype is discussed and compared with the existing version. Constitutive equations are presented for the active and passive layer...
-
Design and simulation of a new prototype of piezoelectric cantilever sensor/actuator for analysis of the soft tissues properties
PublicationThis paper is devoted to a new prototype of piezoelectric cantilever transducer dedicated for the characterization of the mechanical properties of soft tissues. General description of the actuator’s structure is presented including the basic principles of the measurement. The chosen geometry of the prototype is discussed and compared with the existing one. Constitutive equations are presented for the active and passive layer of...
-
Comparison of strain results at a laser weld notch obtained by numerical calculations and experimental measurements
PublicationIn the development of ship structures applying new materials and it’s purposeful placement play an important role. During the last years, especially in a construction of ro-ro type vessels, the usage of novel sandwich structures in cargo decks is profitable. Steel sandwich panel is an innovative solution which at a todays state of development can be used for the construction of any members not taking part in a global bending of...
-
Comparison of buckling resistance of columns modelled by beam and shell elements using non-linear analysis
PublicationThe aim of the paper is to investigate the stability process in the axially compressed columns modelled by beam and shell elements using static and dynamic finite element analysis by taking both the geometric and material non-linearity into account. The perfect columns and columns with geometric imperfections were analysed. The differences between the results of static and dynamic analyses in shell and beam models were discussed.
-
Curb-to-Barrier Face Distance Variation an a TB51 Bridge Barrier Crash Test Simulation
PublicationThis paper addresses the problem of road safety regarding barrier placement as relative to the curb. A short summary of existing regulations is presented. Numerical simulations using the explicit finite element system Ls- Dyna are shown. In the analysis, variable distance between the barrier and the curb is assumed. The obtained result reveals that the distance has little impact on the working width of the barrier.
-
Virtual Space Vector Pulse Width Modulation Algorithm for Three-Level NPC Converters Based on the Final Element Shape Functions
PublicationThe paper puts forth a novel idea for the computation of Nearest Three Virtual Space Vector Pulse Width Modulation for the three level NPC converters. The computations are based on the concept of final element shape function widely used in the domain of finite element analysis. The proposed approach significantly frees the computations from the use of trigonometric functions, which simplifies the computations and permits easier...
-
On geometrically non-linear FEA of laminated FRP composite panels
PublicationThe paper presents a state-of-art review on Finite Element Analysis (FEA) of geometrically non-linear problems for laminated composite plates and shells made as fibre reinforced polymer (FRP) laminates. Besides a subjective overview of the historical development of geometrically non-linear FEA of laminated FRP composite panels, some remarks on possible future issues in this research area are given
-
Diagnostics of historic columns using wave propagation
PublicationThis paper presents a numerical analysis of elastic wave propagation in columns of historical buildings for diagnostics purposes. Numerical calculations were performed using the finite element method in the Abaqus software package. The analysis was carried out for three types of brick columns: a full column, a column filled with debris, and a column empty inside. The excitation was in the form of a wave packet and signals of propagating...
-
Failure Analysis of footbridge made of composite materials
PublicationFinite element method analysis of a pedestrian footbridge made of sandwich material is presented. The internal structure of the material is modelled as a structural shell assuming the Equivalent Single Layer approach (ESL). Two FEM commercial codes are employed. The response of the structure is studied in order to determine the load level that activates Hashin and Tsai-Wu failure criteria. Some practical aspects of designing footbridges...
-
Modal FEM Analysis of Ferrite Resonant Structures
PublicationThe finite-element method (FEM) is applied for modal analysis of ferrite-loaded spherical resonators. To improve the efficiency of the numerical calculations, the body-of-revolution (BOR) technique is utilized. Due to the frequency-dependent ferrite permeability, FEM leads to a nonlinear eigenvalue problem that is challenging to solve. To this end, Beyn’s method is proposed. The effectiveness of the proposed approach is confirmed...
-
A device for measuring heat flux on a rocket skin surface
PublicationA novel method for measuring heat flux on a surface is presented. It is an extensive upgrade of currently known heat flux sensors used mostly in civil engineering. As the thermal environment of launchers, especially sounding rocket can have an enormous negative effect on payload, careful considerations have to be taken in the process of preparing insulation. Usually, thermal data provided by the launch vehicle manufacturer is limited...
-
FEM approach to modeling of an irregular trabecular structure
PublicationThe aim of the study is elaboration of a method for creating irregular scaffolds that can be used to model the behaviour of trabecular bone placed in the proximal epiphysis of the femur. The scope of the study encompasses creating six numerical models of irregular scaffolds (two solid irregular scaffolds, two shell irregular scaffolds and two shell irregular scaffolds with fortification) and performing numerical analysis of the...
-
On the influence of the acceleration recording time on the calculation of impact severity indexes
PublicationThe paper concerns with the analysis of normative requirements pertaining to experimental setup of a crash test and its numerical modelling. An overview of parameters describing the collision of a vehicle with a road restraining system is presented. A short description of a concrete road safety barrier is presented. A brief description of numerical modelling procedures for crash tests is given as well. The parametric influence...
-
Hybrid Technique for the EM Scattering Analysis with the Use of Ring Domain Decomposition
PublicationA hybrid technique combining finite-element and mode-matching methods for the analysis of scattering problems in open space is presented here. The main idea is based on impedance matrix descriptions of the boundary surrounding the discrete computational domain and combine it with external field described analytically. The discrete analysis, which is the most time- and memory-consuming, is limited here only to the close proximity...
-
Calculation of Resonance in Planar and Cylindrical Microstrip Structures Using a Hybrid Technique
PublicationA hybrid technique was employed for the analysis of the resonance frequency of thin planar and cylindrical microstrip structures with the patches of arbitrary geometry. The proposed technique utilizes a combination of Galerkin’s moment method and a finite-element method (FEM). In this approach, an FEM is adopted to calculate the patch surface current densities, and a method of moments is utilized to calculate the resonance frequencies...
-
Numerical tests of time-stepping schemes in the context of FEM for 6-field shell dynamics
PublicationThe paper deals with integration of dynamic equations of irregular shells performed with relatively long time steps. Numerical instability appearing often in this kind of analysis motivated the authors to present some studies based on numerical tests referring to convergence problems of finite element analysis as well the applied stability conditions. The analysis is carried out on simulations of shell dynamics with the where the...
-
Development and performance analysis of a novel multiphase doubly-fed induction generator
PublicationThis paper presents the research into the design and performance analysis of a novel five-phase doubly-fed induction generator (DFIG). The designed DFIG is developed based on standard induction motor components and equipped with a five-phase rotor winding supplied from the five-phase inverter. This approach allows the machine to be both efficient and reliable due to the ability of the five-phase rotor winding to operate during...
-
Progressive failure analysis of laminates in the framework of 6-field nonlinear shell theory
PublicationThe paper presents the model of progressive failure analysis of laminates incorporated into the 6-field non-linear shell theory with non-symmetrical strain measures of Cosserat type. Such a theory is specially recommended in the analysis of shells with intersections due to its specific kinematics including the so-called drilling rotation. As a consequence of asymmetry of strain measures, modified laminates failure criteria must...
-
A procedure for elastoplastic hardening function identification.
PublicationThe inverse analysis method for identifying a nonlinear hardening function,which governs a plastic yielding of soil and rock materials in the framework of elastoplastic theory is presented. A concept of two stage finite element based on spatial discretization of computational space and hardening function space is introduced. The proposed inverse analysis can be classified as the output least squares method. The Levenberg Marquard...
-
Sensitivity analysis in design process of sandwich U-shaped composite footbridge
PublicationThe structure of the sandwich composite footbridge of a 14 metre span length and U-shaped cross-section was analysed. Sensitivity analysis was performed to support the design process of this innovative object. Linear discrete sensitivity analysis was performed by means of finite element method. The influence of vari-ation of several design variables i.e. thicknesses of inner and outer laminates on the mid-span deflection, as-sumed...
-
Hybrid Analysis of Structures Composed of Axially Symmetric Objects
Publication— A hybrid method for the scattering problems in shielded and open structures is presented. The procedure is based on the combination of body-of-revolution involving finite-element methods with impedance matrix formulation and the mode-matching technique, which can be utilized for the analysis of structures with axially symmetrical scatterers. In order to confirm the validity and efficiency of the proposed approach, a few examples...
-
Composite sandwich footbridge - measured dynamic response vs. FEA
PublicationThe paper describes a process of in situ dynamic tests of a composite sandwich footbridge before its accepta-tion for exploitation in real traffic conditions. It is only a part of a big research task that includes design, manufacture and introduce practical application of the bridge. The in situ measured natural modes and fre-quencies are compared with numerically determined ones. Finite element analysis is established to estimate...
-
Sensitivity analysis of a composite footbridge
PublicationThis work include an example of sensitivity analysis for the design of a composite footbridge. A sandwich structure is used, consisting two high-strength skins separated by a core material. The analysis was conducted for two numerical models. The first one is a simple, single-span beam of a composite cross-section (laminate and foam), with different Young’s modulus for each material. Calculations were made by means of a MATLAB-based...
-
Modal analysis of a steel grandstand
PublicationAmong the issues related to the idea of sustainable society is the safety of civil engineering structures devoted to satisfy different needs of people. One of the types of structures devoted to satisfy recreational needs are grandstands, which are used during sport events or music concerts. It is obligatory to consider interaction between structure and crowd load especially when the crowd movement involves rhythmic jumping, dancing,...
-
Experimental and numerical investigations of ultimate strength of imperfect stiffened plates of different slenderness
PublicationThe objective of this study is to analyse the behaviour of compressed stiffened plates of different slenderness using experimental and numerical methods. The presented results are part of a long-term project to investigate the ultimate strength of geometrically imperfect structures subjected to different degradation phenomena, including corrosion degradation and locked cracks. Several specimens were subjected to a uniaxial compressive...
-
Experimental investigation and process parameter optimization of sheet metal bending by line heating method
PublicationThe present study is concerned with the experimental investigation of sheet metal deforming by line heating method that incorporates the combined effect of traverse speed of the torch, thickness of the sheet metal, and the number of passes of the torch. For the numerical analysis of metal bending by line heating, the
-
Sophistication assessment of existing FEM models of orbital blowout trauma: Is models valuation justified?
PublicationAfter a thorough study of the work entitled “Development and validation of an optimized finite element model of the human orbit”, some doubts aroused concerning the sophistication assessment of the existing finite element method (FEM) models of orbital blow-out. Although the work was unquestionably innovative, and the results were not only fascinating but also invaluable, the authors stated that their model was the most sophisticated...
-
Factory Acceptance Test – Strain Gauge Measurement, Report no: WOiO /II/123/2014
PublicationTested object was 40 meters long jib and its foundation, placed in Gdansk Shiprepair Yard, manufactured by KMK. The contruction was dedicated to the passenger cruise vessel "Quantum of the Seas" The Strain Gauge measurement in different location and load situation was done in order to validate calculation finite element models used during strength analysis for project. The expertise contains: methodology of the measurements, description...
-
Factory Acceptance Test – Strain Gauge Measurement - Report no: WOiO /II/88/2014
PublicationTested object was 40 meters long jib and its foundation, placed in Gdansk Shiprepair Yard, manufactured by KMK. The contruction was dedicated to the passenger cruise vessel "North Star" The Strain Gauge measurement in different location and load situation was done in order to validate calculation finite element models used during strength analysis for project. The expertise contains: methodology of the measurements, description...
-
Communication Model Order Reduction in Hybrid Methods Involving Generalized Impedance Matrix
PublicationA novel strategy for the efficient analysis of frequency-domain scattering electromagnetic problems in open and closed domains is presented. A fully automatic model-order reduction technique, called the enhanced reduced-basis method, is applied to increase the efficiency of the hybrid approach, which combines the finite-element and mode-matching methods. Numerical tests show that the proposed algorithm yields reliable and highly...
-
Ultrasonic Tomography of Brick Columns Based on FEM Calculations
PublicationUltrasonic tomography is one of the most developed method of non-destructive testing. Despite being used mainly in medicine, it is becoming more and more popular as a method for monitoring of structural elements. It allows to examine the internal structure and technical condition of the tested element. This paper investigates the influence of crosssectional geometry on an obtained tomographic image. Wave propagation signals were...
-
Comparison of experimental and numerical results on metallic plates subjected to explosions
PublicationA comparative study of dynamic response including damage and rupture processes of thin metallic plates subjected to shockwave impulses - explosions is presented. The results of the finite element numerical analysis are related to experiments. Due to high strain rate during explosions the elasto-viscoplastic Chaboches constitutive law including damage effects has been applied. For the assumed model proper material parameters identification...
-
Lamb wave propagation in a single lap adhesive joint
PublicationThe aim of the paper is the analysis of Lamb wave propagation in adhesive joints. The research was performed on a single lap adhesive joint of two steel plates. Two types of joints, namely an intact and with defect were considered. In experimental investigations the condition assessment of the joint was performed with the use of antisymmetric Lamb waves excited by a plate piezo actuators and measured by a laser vibrometer. Numeri-cal...
-
FEM approach to estimate the behaviour of biocomposite metal-surface coating system
PublicationA three dimensional (3D) model of biocomposite metal-surface coating system, which is influenced byknown external forces, is proposed. This model consists of the metallic substrate (Ti6Al4V) and thehydroxyapatite (HA) coating. Using FEM (finite element method), strain-stress maps of model weregenerated for investigating relations between the extreme stress of HA coating and the magnitude ofexternal force and the thickness of the...
-
Electromagnetic Simulations with 3D FEM and Intel Optane Persistent Memory
PublicationAbstract—Intel Optane persistent memory has the potential to induce a change in how high-performance calculations requiring a large system memory capacity are conducted. This article presents what this change may look like in the case of factorization of large sparse matrices describing electromagnetic problems arising in the 3D FEM analysis of passive highfrequency components. In numerical tests, the Intel oneAPI MKL PARDISO was...
-
Comparison of Compact Reduced Basis Method with Different Model Order Reduction Techniques
PublicationDifferent strategies suitable to compare the performance of different model order reduction techniques for fast frequency sweep in finite element analysis in Electromagnetics are proposed and studied in this work. A Frobenius norm error measure is used to describe how good job a reduced-order model is doing with respect to the true system response. In addition, the transfer function correct behavior is monitored by studying the...