Search results for: porous metallic interconnect
-
Growth, Crystal Structure and Magnetic Characterization of Zn-Stabilized CePtIn4
PublicationThe growth and characterization of CePtIn4, stabilized by 10% Zn substitution for In, is reported. The new material is orthorhombic, space group Cmcm (No. 63), with lattice parameters a = 4.51751(4) Å, b = 16.7570(2) Å, and c = 7.36682(8) Å, and the refined crystal composition has 10% of Zn substituted for In, i.e., the crystals are CePt(In0.9Zn0.1)4. Crystals were grown using a self-flux method: only growths containing Zn yielded...
-
Electrodeposited Biocoatings, Their Properties and Fabrication Technologies: A Review
PublicationCoatings deposited under an electric field are applied for the surface modification of biomaterials. This review is aimed to characterize the state-of-art in this area with an emphasis on the advantages and disadvantages of used methods, process determinants, and properties of coatings. Over 170 articles, published mainly during the last ten years, were chosen, and reviewed as the most representative. The most recent developments...
-
Incomplete Cross-Bonding in the MV Line. Experience from the Operation of MV Single Cable Lines
PublicationCable lines are one of the basic components of power systems. Medium and high voltage cables mainly comprise a metallic sheath, which is concentric to the main core conductor. There are several operating schemes of such cable lines, which differ in the place of earthing of sheaths and the possible use of the sheaths and/or conductors crossing. The sheaths cross-bonding is typically done in two places of one cable line section,...
-
A Study of Mutual Coupling Suppression between Two Closely Spaced Planar Monopole Antenna Elements for 5G New Radio Massive MIMO System Applications
Publication5G NR (new radio) introduces the concept of massive MIMO (multiple-input-multiple-output) technology, in which a larger number of antenna arrays are installed on the transceiver. Due to the increased number of antenna elements allocated close to each other (approximately at half-wavelength distance), mutual coupling becomes a serious problem leading to performance degradation of the MIMO communication system. In this communication,...
-
Effects of Ni-NCAL and Ni–Ag electrodes on the cell performances of low-temperature solid oxide fuel cells with Sm0.2Ce0·8O2-δ electrolyte at various temperatures
PublicationThree low-temperature solid oxide fuel cells are built using Sm0.2Ce0·8O2-δ (SDC) as the electrolyte. Cell A is symmetrical and features Ni–LiNi0.8Co0·15Al0·05O2 (Ni–NCAL) electrodes, Cell B comprises a Ni–NCAL anode and a Ni–Ag cathode, and Cell C is fabricated using a Ni–NCAL cathode and a Ni–Ag anode. The ohmic resistance and polarization resistance (Rp) of Cells B and C are significantly higher than those of Cell A. The reduction...
-
Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts
PublicationThe direct carbonization of low-cost and abundant chitosan biopolymer in the presencesalt eutectics leads to highly microporous, N-doped nanostructures. The microporous structureeasily manufactured using eutectic mixture (ZnCl2 -KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient...
-
Risks related to car fire on innovative Poroelastic Road Surfaces-PERS
PublicationTo reduce tyre/road noise, the concept of poroelastic road surfaces (PERS) was invented. PERS is a road surface material that is porous, and at the same time, it is flexible because of the substantial amount of rubber granulate content (from 20% to 85%). The rubber and stone particles are bound by polyurethane resin instead of bitumen. It was feared that in case of fire, because of the high content of rubber and polyurethane, there...
-
Tyre/road noise of passenger car tyres, including tyres for electric vehicles - road measurements
PublicationThe paper presents the results from CPX measurements of tyre/road noise performed for selected passenger car tyres, including the tyres especially designed for electric vehicles. The tyres have been measured when rolling on several typical road surfaces in Norway and in Poland. In addition, the tyres have been measured on some very low noise road surfaces, such as a the poroelastic road surface (PERS). The measurement results...
-
Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes
PublicationFlow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighboring nodes or cells of the numerical...
-
Wettability of shale rock as an indicator of fracturing fluid composition
PublicationShales have become one of the main unconventional gas resources in the world. However, physicochemical properties of rocks are still at the center of research. There have been conducted major researches in wettability of shales by fluids and advances in understanding and control of shale rock wettability. Also influence of interfacial phenomena on a production capacity of reservoirs have been made. The aim of this study is to find...
-
Bisphenols and their derivatives in baby diaper samples.
PublicationMany common products contain and leach hazardous chemicals, including endocrine-disrupting chemicals such as bisphenols that are harmful to human health. For toddlers, this dangerousness is higher because of their not fully developed detoxification system. Due to this, bisphenols content in products such as baby diapers, should be monitored. Baby diapers not only remain in close contact with the skin, but are also used from the...
-
Preparation and Characterization of Nanomaterial Consisting of Silica Aerogel & Carbon Tested as an Electrode in Non-Aqueous Media Containing Lithium Salt.
PublicationSilica aerogel (SiO2ag) was combined with carbonaceous material in the pyrolysis process of hydrocarbons. The obtained nanocomposite SiO2ag/C was amorphous, partially preserving the porous structure of SiO2ag. The specific surface area changes from 445.6 m2/g for pure SiO2ag to 205.52 m2/g SiO2ag/C. The 29Si MAS-NMR shows a three-dimensional matrix with silicon atoms connected to other silicon atoms by four...
-
Application of the expanded clay aggregate in form of granular materials for water treatment
PublicationThe paper aimed to evaluate the efficiency of Filtralite MonoMulti compared to the conventional dual-media filter beds comprising silica sand layer covered with anthracite coal. Filtralite media are composed of processed (expanded), highly porous clay products characterized by relatively rough grain surfaces. In order to compare these different media filters in a reliable way, the pilot filter columns operated in parallel, under...
-
Evaluation of Low Temperature Properties of Rubberized Asphalt Mixtures
PublicationThe paper presents low-temperature test results of asphalt mixtures designed with use of bitumen modified by crumb rubber and also SBS polymer. Laboratory tests were conducted on two types of asphalt mixtures for wearing course – stone matrix asphalt (SMA 8) and porous asphalt (PA 8). This paper presents results of the following laboratory tests at low temperatures: TSRST test, three point bending creep test, fracture toughness...
-
Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods
PublicationNowadays, titanium and its alloys are widely used materials in implantology. Nevertheless, the greatest challenge is still its appropriate surface treatment in order to induce optimal properties, which facilitates formation of a permanent bond between the implant and human tissue. The use of electrochemical treatment such as anodic oxidation or plasma electrolytic oxidation allows for the production of porous coating that mimics...
-
Synergistic effects of nitrogen-doped carbon and praseodymium oxide in electrochemical water splitting
PublicationHybrid materials featuring perovskite-type metal oxide in conjunction with heteroatom-doped graphene hold immense promise as alternatives to costly noble metal catalysts for electrochemical water splitting, facilitating the generation of environmentally friendly hydrogen. In this study, perovskite-type oxide containing praseodymium, barium, strontium, cobalt, and iron atoms dispersed in a carbon matrix as a catalyst is synthesized...
-
Resistive gas sensors – Perspectives on selectivity and sensitivity improvement
PublicationResistive gas sensors are very popular and relatively inexpensive; they can operate at elevated or room temperature for years on end. The main disadvantage of resistive gas sensors is their limited selectivity and sensitivity, but various methods have been applied to improve their behavior. The composition of the porous gas sensing layer, or changes in the sensor’s operating temperature, can enhance the gas detection ability. Furthermore, emerging...
-
Laser Beam as a Precision Tool to Increase Fatigue Resistance in an Eyelet of Undercarriage Drag Strut
PublicationThe article contains the results of tests on a laser-processed eyelet of undercarriage drag strut to increase its fatigue strength. Laser processing concentrated on both sides around the hole of eye for connecting the undercarriage drag strut caused that the material in this area withstood more than twice the number of load cycles established for this material. In order to determine the reasons for the increase in fatigue strength,...
-
Changes on the Surface of the SiO2/C Composite, Leading to the Formation of Conductive Carbon Structures with Complex Nature of DC Conductivity
PublicationSol–gel layers have been the subject of many studies in recent decades. However, very little information exists about layers in which carbon structures are developed in situ. Using the spin-coating method, we obtained thin iron-doped SiO2/C composite films. The results of Raman spectroscopy showed that our samples consisted of graphitic forms and polymers. The latter’s contribution decreases with rising temperature. FTIR and EDS...
-
Miniaturized Metal-Mountable U-shaped Inductive-Coupling-Fed UHF RFID Tag Antenna with Defected Microstrip Surface
PublicationThis study presents a novel miniature ultra-high frequency (UHF) radio frequency identification (RFID) tag for metallic objects. Its arrangement includes a U-shaped feeder, which is inductively coupled to two E-type connected patches. Size reduction is achieved by means of utilizing the U-shaped feeder, and introducing a defection in the connection between the two E-type patches. The defection in the connection area between the...
-
Mechanism of Li nucleation at graphite anodes and mitigation strategies
PublicationLithium metal plating is a critical safety issue in Li-ion cells with graphite anodes, and contributes significantly to ageing, drastically limiting the lifetime and inducing capacity loss. Nonetheless, the nucleation mechanism of metallic Li on graphite anodes is still poorly understood. But in-depth understanding is needed to rationally design mitigation measures. In this work, we conducted FirstPrinciples studies to elucidate...
-
Inline Waveguide Filter With Transmission Zeros Using a Modified-T-Shaped-Post Coupling Inverter
PublicationThis letter reports the design techniques for a class 2 of inline waveguide bandpass filters with sharp-rejection capabil3 ities at the lower stopband based on a novel nonlinear-frequency4 variant-coupling (NFVC) structure. The proposed NFVC consists 5 of a modified-T-shaped metallic post (MTP) that is placed at the 6 center of the waveguide broad wall with its open arms lying 7 along the waveguide width. The engineered NFVC structure 8...
-
Impact of low-temperature sintering on the Fe-based amorphous coatings
PublicationBulk metallic glasses (BMGs) have gained a lot of attention in recent years due to their outstanding properties such as high hardness and excellent wear and corrosion resistance. However, they are restricted in industrial applications due to their extreme brittleness. Iron based amorphous coatings from BMGs are the best solution to use them by overcoming the problem of extreme brittleness. The coatings can be sprayed by various...
-
Superconductivity in the Cu(Ir1-xPtx)2Se4 spinel
PublicationWe report the observation of superconductivity in the CuIr2Se4 spinel induced by partial substitution of Pt for Ir. The optimal doping level for superconductivity in Cu(Ir1-xPtx )2Se4 is x = 0.2, where Tc is 1.76 K. A superconducting Tc vs composition dome is established between the metallic, normal conductor CuIr2Se4 and semiconducting CuIrPtSe4. Electronic structure calculations show that the optimal Tc occurs near the electron count...
-
Novel luminescent calixarene-based lanthanide materials: From synthesis and characterization to the selective detection of Fe3+
PublicationCalix[n]arene-based coordination networks are an emerging class of materials with intriguing properties resulted from the presence of the cavity-like structure of the macrocycle and metallic nodes. In this work, four novel luminescent materials based on calix[4]arene-carboxylate and lanthanides (Eu3þ and Tb3þ) were prepared by two synthetic approaches, solvothermal (CDA-Eu-ST) and slow diffusion (CDA-Eu-RT, CDA-Tb-RT, CTA-Tb-complex)...
-
Improving Thermal Insulation Properties for Prefabricated Wall Components Made of Lightweight Aggregate Concrete with Open Structure
PublicationPorous concrete is commonly used in civil engineering due to its good thermal insulation properties in comparison with normal concrete and high compression strength in comparison with other building materials. An extremely porous concrete, called ‘lightweight aggregate concrete with open structure’ (LAC), is used in some German plants to produce prefabricated wall components. They are used mainly in hall buildings, e.g. supermarkets....
-
Metal-Organic Framework (MOF)/Epoxy Coatings: A Review
PublicationEpoxy coatings are developing fast in order to meet the requirements of advanced materials and systems. Progress in nanomaterial science and technology has opened a new era of engineering for tailoring the bulk and surface properties of organic coatings, e.g., adhesion to the substrate, anti-corrosion, mechanical, flame-retardant, and self-healing characteristics. Metal-organic frameworks (MOFs), a subclass of coordinative polymers...
-
Low Noise Poroelastic Road Pavements Based On Bituminous Binder
PublicationTire/road noise is the dominant source of traffic noise. It depends both on the tire design and on the characteristics of road pavements as well as on the vehicles’ operating conditions. Due to the fact that conventional (pneumatic) car tires have almost reached the limits of their ability to further reduce their noisiness, it is widely believed that the additional reduction of tire noise will be possible mainly through modifications...
-
Investigation of thin perovskite layers between cathode and doped ceria used as buffer layer in solid oxide fuel cells
PublicationIn this paper, thin perovskite layers between cathode material of solid oxide fuel cells and gadolinia-doped ceria buffer layer are investigated. Thin layers made of LaNi0.6Fe0.4O3-δ (LNF), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), or SrTi0.65Fe0.35O3-δ (STF) were symmetrically deposited by spin coating method from metallo-organic polymer precursors on a Ce0.8Gd0.2O2-δ (CGO) substrate. Porous and about 40-μm-thick LNF cathodes were deposited...
-
THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS
PublicationWidespread commercialization of solid oxide fuel cells requires lowering its cost. It is generally accepted that to lower the cost of solid oxide fuel cells it is necessary to use metal alloys as interconnectors and, consequently, lower its operating temperature to slow down interconnectors degradation. As a result the area specific resistance of the cathodes should be lowered to sustain the performance of the cells. In order to...
-
Fabrication of wormhole-like YSZ and Ni-YSZ by the novel soft-hard template CTAB/NaCl-assisted route. Suppressing Ni coalescence in SOFC
PublicationA novel one-pot synthesis route leading to the formation of a wormhole-like structure was developed for the successful fabrication of porous YSZ and Ni-YSZ systems. This method involved co-precipitation in the presence of the micelle-forming agents CTAB/Pluronic P123 and crystallising NaCl. The obtained skeletons were mechanically stable and presented almost 50% uniform, open porosity without using any additional pore-formers....
-
Numerical Simulations of Seepage in Dikes Using unsaturated and Two-Phase Flow Models
PublicationModeling of water flow in variably saturated porous media, including flood dikes, is often based on the Richards equation, which neglects the flow of pore air, assuming that it remains at constant atmospheric pressure. However, there is also evidence that the air flow can be important, especially when the connectivity between the pore air and atmospheric air is lost. In such cases a full two-phase air-water flow model should be...
-
Proton Conducting Ceramic Powder Synthesis by a Low Temperature Method
PublicationMolten salt synthesis (MSS) is a simple method for the preparation of ceramic powders with specific morphology. The main role of the molten salts is to increase the reaction rate and lower the reaction temperature. It occurs because of much higher mobility of reactants in the liquid medium than in the solid state. In this work the molten salt synthesis was applied to produce ceramic powders of La0995Ca0005NbO4 and BaCe09−xZrxY01O3....
-
CuO-decorated MOF derived ZnO polyhedral nanostructures for exceptional H2S gas detection
PublicationConsidering that H2S is a hazardous gas that poses a significant risk to people's lives, research into H2S gas sensors has garnered a lot of interest. This work reports a CuO/ZnO multifaceted nanostructures(NS) created by heat treating Cu2+/ZIF-8 impregnation precursors, and their microstructure and gas sensing characteristics were examined using various characterization techniques (XRD, XPS, SEM, TEM, and BET). The as-prepared...
-
Negative CO2 Emission Gas Power Plant As Technology for Utilization of Sewage Sludge, Production of Electrical Energy, and CO2 Capture - Case of Chamber Under Transpiration Cooling
PublicationThis work focuses on the concept developed in the nCO2PP project, which aims to demonstrate a technology that allows to achieve negative CO2 emissions through Carbon Capture and Storage (CCS) applied to sewage sludge. A feedstock is first gasified, then the resulting syngas is burned in a semi-closed oxy-fuel gas turbine with pure oxygen and water, using the advantages of oxy-combustion, to ease the capture of CO2 in the resulting...
-
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublicationIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Fluctuation-enhanced and conductometric gas sensing with nanocrystalline NiO thin films: A comparison
PublicationNanocrystalline thin films of NiO were prepared by advanced reactive gas deposition, and their responses to formaldehyde, ethanol and methane gases were studied via fluctuation-enhanced and conductometric methods Thin films with thicknesses in the 200–1700-nm range were investigated in as-deposited form and after annealing at 400 and 500 °C. Morphological and structural analyses showed porous deposits with NiO nanocrystals having...
-
Emission of 1.3–10 nm airborne particles from brake materials
PublicationOperation of transport vehicle brakes makes a significant contribution to airborne particulate matter in urban areas, which is subject of numerous studies due to the environmental concerns. We investigated the presence and number fractions of 1.3–10 nm airborne particles emitted from a low-metallic car brake material (LM), a non-asbestos organic car brake material (NAO) and a train brake cast iron against a cast iron. Particles...
-
Correlations between the wear of car brake friction materials and airborne wear particle emissions
PublicationAirborne wear particles emitted from transport vehicle brakes are one of the main sources of toxic metals in inhalable particulate matter. Prediction of wear particle emissions may become more accurate if the relationship between the wear and particle emission characteristics is known. An experimental study was performed to investigate proportional correlations between the mass wear, 0.01–0.42 μm particle emission measured by a NanoScan...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublicationPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Spectacular Oxygen Evolution Reaction Enhancement Through Laser Processing of the Nickel-Decorated Titania Nanotubes
PublicationThe selective, laser-induced modification of the nickel-decorated titania nanotubes provides remarkable enhancement toward oxygen evolution reaction. Particularly, the irradiation of the laterally spaced crystalline TiO2 nanotubes, results in the formation of the tight closure over irradiated end, preserving their hollow interior. The shape of the absorbance spectra is modulated along with applied energy, and the new absorption...
-
Study of the Layer-Type BST Thin Film with X-ray Diffraction and X-ray Photoelectron Spectroscopy
PublicationIn the present paper, results of X-ray photoelectron studies of electroceramic thin films of barium strontium titanate, Ba1xSrxTiO3 (BST), composition deposited on stainless-steel substrates are presented. The thin films were prepared by the sol-gel method. A spin-coating deposition of BST layers with different chemical compositions was utilized so the layer-type structure of (0-2) connectivity was formed. After the deposition,...
-
Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering
PublicationThe paper is focused on a study of formation of TiOxNy thin films prepared by pulsed magnetron sputtering of metallic Ti target. Oxygen and nitrogen were delivered into the discharge in the form of reactive gases O2 and N2. The films were deposited by high-power impulse magnetron sputtering working with discharge repetition frequency f = 250 Hz at low (p = 0.75 Pa) and high (p = 10 Pa) pressure. The substrates were on floating...
-
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy
PublicationNowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of...
-
Ternary Bismuthide SrPtBi2: Computation and Experiment in Synergism to Explore Solid-State Materials
PublicationA combination of theoretical calculation and the experimental synthesis to explore the new ternary compound is demonstrated in the Sr–Pt–Bi system. Because Pt–Bi is considered as a new critical charge-transfer pair for superconductivity, it inspired us to investigate the Sr–Pt–Bi system. With a thorough calculation of all the known stable/metastable compounds in the Sr–Pt–Bi system and crystal structure predictions, the thermodynamic...
-
Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation
PublicationCommercial titania photocatalysts were modified with 2 wt% of silver by photodeposition. The properties of the samples were characterized by DRS, XPS, XRD, FE-SEM and STEM. The modified samples exhibited activity under visible light and enhanced activity under UV irradiation for 2-propanol and acetic acid oxidation, respectively. The time-resolved microwave conductivity (TRMC) analysis indicated that enhanced activity (2.5–8-fold...
-
Copper and copper-manganese 1D coordination polymers: Synthesis optimization, crystal structure and preliminary studies as catalysts for Baylis–Hillman reactions
PublicationThis work reports the influence of experimental parameters (pH and counter-ion) in the synthesis of the 1D coordination polymer [Cu(IDA)(H2O)2]n (IDA = iminodiacetate), named here Cu-IDA. Copper-manganese bimetallic coordination polymers were also obtained by isomorphic replacement into Cu-IDA structure, with different molar ratio of Cu2+ and Mn2+ ions, denoted here as Cu/Mn-IDA (0.9/0.1; 0.7/0.3 and 0.5/0.5). New coordination...
-
Spectacular Oxygen Evolution Reaction Enhancement through Laser Processing of the Nickel‐Decorated Titania Nanotubes
PublicationThe selective, laser‐induced modification of the nickel‐decorated titania nanotubes provides remarkable enhancement toward oxygen evolution reaction. Particularly, the irradiation of the laterally spaced crystalline TiO2 nanotubes, results in the formation of the tight closure over irradiated end, preserving their hollow interior. The shape of the absorbance spectra is modulated along with applied energy, and the new absorption...
-
Unraveling the role of boron dimers in the electrical anisotropy and superconductivity in boron-doped diamond
PublicationWe use quantum mechanics (QM) to determine the states formed by B dopants in diamond. We find that isolated B sites prefer to form BB dimers and that the dimers pair up to form tetramers (BBCBB) that prefer to aggregate parallel to the (111) surface in the <110> direction, one double layer below the H-terminated surface double layer. These tetramers lead to metallic character (Mott metal Insulator Transition) with holes in the...
-
Influence of pore formers on electrical properties of CaTi0.9Fe0.1O3-δ perovskite-type ceramics
PublicationPorous CaTi0.9Fe0.1O3-δ (CTF) perovskites were synthesized by the standard solid state method at different sintering temperatures with carbon black (CB), corn starch (CS) and potato starch (PS) as pore-forming agents. The ceramic samples of porosity between 9% and 42% with 5 - 40 μm pore sizes, were obtained by a 6 h sintering at either 1130º C or 1200º C of precursor powder prepared at 1470º C. X-ray diffraction analysis proved...