Search results for: neural network architecture search - Bridge of Knowledge

Search

Search results for: neural network architecture search

Search results for: neural network architecture search

  • Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks

    Publication

    This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...

    Full text to download in external service

  • Towards bees detection on images: study of different color models for neural networks

    Publication

    This paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...

  • Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings

    Publication

    - Year 2022

    The paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...

    Full text available to download

  • ARRIERE-GARDE IN ARCHITECTURE, AS A RESPONSE TO POST-POSTMODERN REALITY

    Publication

    - Year 2016

    The article presents a general discussion on the direction of contemporary architecture. We can freely speak that postmodernity, understood in its philosophical core as a search for meaning in architecture, as a strategy of building our environment is over. What comes next? Some say, from lack of better naming, that we live in post-postmodern times. Term post-postmodernity is a call for new strategy of shaping our societies and...

    Full text to download in external service

  • Automated hearing loss type classification based on pure tone audiometry data

    Publication
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Scientific Reports - Year 2024

    Hearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...

    Full text to download in external service

  • How to Sort Them? A Network for LEGO Bricks Classification

    Publication

    LEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...

    Full text available to download

  • Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets

    Artificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...

    Full text available to download

  • Applying artificial neural networks for modelling ship speed and fuel consumption

    Publication

    This paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...

    Full text available to download

  • Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing

    Developing signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....

    Full text available to download

  • Resource constrained neural network training

    Publication

    Modern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...

    Full text available to download

  • Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm

    Publication
    • K. Thiagarajan
    • M. Manapakkam Anandan
    • A. Stateczny
    • P. Bidare Divakarachari
    • H. Kivudujogappa Lingappa

    - Remote Sensing - Year 2021

    Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...

    Full text available to download

  • Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings

    Publication

    The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic...

    Full text available to download

  • Urban scene semantic segmentation using the U-Net model

    Publication

    - Year 2023

    Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...

    Full text to download in external service

  • Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures

    Many studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...

    Full text to download in external service

  • Evaluating Performance and Accuracy Improvements for Attention-OCR

    In this paper we evaluated a set of potential improvements to the successful Attention-OCR architecture, designed to predict multiline text from unconstrained scenes in real-world images. We investigated the impact of several optimizations on model’s accuracy, including employing dynamic RNNs (Recurrent Neural Networks), scheduled sampling, BiLSTM (Bidirectional Long Short-Term Memory) and a modified attention model. BiLSTM was...

    Full text to download in external service

  • Case Study NEB Atlas / part I - 3D Models / King's Cross, London

    Open Research Data
    open access

    The data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the King's Cross, London, UK. The students...

  • Lifelong Learning Idea in Architectural Education

    The recent advances in IT and technology are forcing changes in the approach to educating society. In the 20th century, life-long learning was understood as educating adults in order to improve their occupational qualifications. Life-long learning allows the needs of the present-day world to be addressed through providing the individual with education at every stage of his/her life various forms. The search for a new model...

    Full text available to download

  • Retrieval of Heterogeneus Sevices in C2NIWA Repository

    Publication

    The paper reviews the methods used for retrieval of information and services. The selected approaches presented in the review inspired us to build retrieval mechanisms in a system for searching the resources stored in the C2NIWA repository. We describe the architecture of the system, its functions and the surrounding subsystems to which it is related. For retrieval of C2NIWA sevices we propos three approaches based on: keyword...

    Full text available to download

  • Spectral Clustering Wikipedia Keyword-Based search Results

    The paper summarizes our research in the area of unsupervised categorization of Wikipedia articles. As a practical result of our research, we present an application of spectral clustering algorithm used for grouping Wikipedia search results. The main contribution of the paper is a representation method for Wikipedia articles that has been based on combination of words and links and used for categoriation of search results in this...

    Full text available to download

  • Global Surrogate Modeling by Neural Network-Based Model Uncertainty

    Publication

    - Year 2022

    This work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...

    Full text to download in external service

  • Neural network training with limited precision and asymmetric exponent

    Publication

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Full text available to download

  • Efficient Calibration of Cost-Efficient Particulate Matter Sensors Using Machine Learning and Time-Series Alignment

    Atmospheric particulate matter (PM) poses a significant threat to human health, infiltrating the lungs and brain and leading to severe issues such as heart and lung diseases, cancer, and premature death. The main sources of PM pollution are vehicular and industrial emissions, construction and agricultural activities, and natural phenomena such as wildfires. Research underscores the absence of a safe threshold for particulate exposure,...

    Full text to download in external service

  • DEEP LEARNING BASED ON X-RAY IMAGING IMPROVES COXARTHROSIS DETECTION

    Publication
    • M. Maj
    • J. Borkowski
    • J. Wasilewski
    • S. Hrynowiecka
    • A. Kastrau
    • M. Liksza
    • P. Jasik
    • M. Treder

    - Year 2022

    Objective: The purpose of the study was to create an Artificial Neural Network (ANN) based on X-ray images of the pelvis, as an additional tool to automate and improve the diagnosis of coxarthrosis. The research is focused on joint space narrowing, which is a radiological symptom showing the thinning of the articular cartilage layer, which is translucent to X-rays. It is the first and the most important of the radiological signs...

    Full text to download in external service

  • Neural network agents trained by declarative programming tutors

    Publication

    This paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...

    Full text to download in external service

  • Cleaner energy for sustainable future using hybrid photovoltaics-thermoelectric generators system under non-static conditions using machine learning based control technique

    In addition to the load demand, the temperature difference between the hot and cold sides of the thermoelectric generator (TEG) module determines the output power for thermoelectric generator systems. Maximum power point tracking (MPPT) control is needed to track the optimal global power point as operating conditions change. The growing use of electricity and the decline in the use of fossil fuels have sparked interest in photovoltaic-TEG...

    Full text to download in external service

  • LSA Is not Dead: Improving Results of Domain-Specific Information Retrieval System Using Stack Overflow Questions Tags

    Publication

    - Year 2024

    The paper presents the approach to using tags from Stack Overflow questions as a data source in the process of building domain-specific unsupervised term embeddings. Using a huge dataset of Stack Overflow posts, our solution employs the LSA algorithm to learn latent representations of information technology terms. The paper also presents the Teamy.ai system, currently developed by Scalac company, which serves as a platform that...

    Full text available to download

  • Neural Network World

    Journals

    ISSN: 1210-0552

  • Controlling computer by lip gestures employing neural network

    Publication

    - Year 2010

    Results of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....

    Full text to download in external service

  • Electronic nose algorithm design using classical system identification for odour intensity detection

    The two elements considered crucial for constructing an efficient environmental odour intensity monitoring systems are sensors and algorithms typically addressed to as electronic nose sensor (e-nose). Due to operational complexity of biochemical sensors developed in human bodies algorithms based on computational methods of artificial intelligence are typically considered superior to classical model based approaches in development...

    Full text to download in external service

  • A Bayesian regularization-backpropagation neural network model for peeling computations

    Publication
    • S. Gouravaraju
    • J. Narayan
    • R. Sauer
    • S. S. Gautam

    - JOURNAL OF ADHESION - Year 2023

    A Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...

    Full text available to download

  • Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis

    Publication

    Renal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...

    Full text available to download

  • Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate

    Publication

    - IEEE Access - Year 2021

    Fast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...

    Full text available to download

  • Development of an AI-based audiogram classification method for patient referral

    Publication

    - Year 2022

    Hearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...

    Full text to download in external service

  • Deep learning in the fog

    In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...

    Full text available to download

  • From Linear Classifier to Convolutional Neural Network for Hand Pose Recognition

    Publication

    Recently gathered image datasets and the new capabilities of high-performance computing systems have allowed developing new artificial neural network models and training algorithms. Using the new machine learning models, computer vision tasks can be accomplished based on the raw values of image pixels instead of specific features. The principle of operation of deep neural networks resembles more and more what we believe to be happening...

    Full text available to download

  • A sense of security and freedom in a residential environment

    The article is based on the results of a survey carried out among students of architecture faculties in several countries, which examined the students’ knowledge of shaping the housing environment in such a way as to enable them to fulfil two basic and, at the same time, seemingly mutually exclusive psychological needs of a person: a sense of security and a sense of freedom. In examining these issues, particular emphasis was placed...

    Full text available to download

  • Intelligent turbogenerator controller based on artifical neural network

    The paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...

    Full text available to download

  • Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network

    Publication

    - Year 2020

    The electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...

    Full text available to download

  • Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

    Publication

    This work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...

    Full text available to download

  • Residual MobileNets

    As modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...

    Full text to download in external service

  • Automatic Rhythm Retrieval from Musical Files

    Publication

    - Year 2008

    This paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....

    Full text to download in external service

  • Theory vs. practice. Searching for a path of practical education

    The introduction of a three-tier model of higher education (the Bologna model) has led to considerable changes in the 1st- and 2nd-tier technical courses at universities. At present, a student with a bachelor’s degree can be employed in his / her profession after completing only 7 semesters of study. A search is under way for methods of combining theoretical knowledge taught at universities with practical knowledge gained afterwards....

    Full text available to download

  • An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key

    Publication

    - Year 2019

    The topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...

    Full text to download in external service

  • Digits Recognition with Quadrant Photodiode and Convolutional Neural Network

    Publication

    - Year 2018

    In this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...

    Full text to download in external service

  • Evolving neural network as a decision support system — Controller for a game of “2048” case study

    Publication

    The paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...

    Full text to download in external service

  • Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services

    Publication

    This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...

    Full text to download in external service

  • Bridging theory and practice in postgraduate education on development and planning: Gdynia Urban Summer Schools 2016-2018

    In this article, the authors discuss results achieved by the Gdynia Urban Summer School (GUSS) organised annually (between 2016 and 2018) in Gdynia, Poland. The GUSS was meant for young practitioners from various professions such as urban and regional planning, urban design, architecture, civil engineering and transport planning. The objective was to give workshop participantspractical interdisciplinary...

    Full text available to download

  • Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals

    It is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...

    Full text available to download

  • Sylwester Kaczmarek dr hab. inż.

    Sylwester Kaczmarek received his M.Sc in electronics engineering, Ph.D. and D.Sc. in switching and teletraffic science from the Gdansk University of Technology, Gdansk, Poland, in 1972, 1981 and 1994, respectively. His research interests include: IP QoS and GMPLS and SDN networks, switching, QoS routing, teletraffic, multimedia services and quality of services. Currently, his research is focused on developing and applicability...

  • EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL

    Publication

    - EPILEPSIA - Year 2009

    We present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.

    Full text to download in external service