Filters
total: 786
Search results for: electronic materials
-
Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source
PublicationElectron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a...
-
Ferro- and antiferro-magnetism in (Np, Pu)BC
PublicationTwo new transuranium metal boron carbides, NpBC and PuBC, have been synthesized. Rietveld refinements of powder XRD patterns of {Np,Pu} BC confirmed in both cases isotypism with the structure type of UBC. Temperature dependent magnetic susceptibility data reveal antiferromagnetic ordering for PuBC below T-N = 44 K, whereas ferromagnetic ordering was found for NpBC below T-C = 61 K. Heat capacity measurements prove the bulk character...
-
Bacterial nanocellulose as a microbiological derived nanomaterial
PublicationBacterial nanocellulose (BNC) is a nanofibrilar polymer produced by strains such as Gluconacetobacter xylinus, one of the best bacterial species which given the highest efficiency in cellulose production. Bacterial cellulose is a biomaterial having unique properties such as: chemical purity, good mechanical strength, high flexibility, high absorbency, possibility of forming any shape and size and many others. Such a large number...
-
Structural, physicochemical and anticancer study of Zn complexes with pyridyl-based thiazolyl-hydrazones
PublicationThiazolyl-hydrazones (THs) exhibit a wide spectrum of biological activity that can be enhanced by complexation with various metal ions. Zn(II) complexes with α-pyridine-1,3-TH ligands may represent an alternative to the standard platinum-based chemotherapeutics. In addition, they show photoluminescence properties and thus can be regarded as multifunctional materials. In this study, we synthesized and characterized three neutral...
-
A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data
PublicationIn this work, a facile method allowing for estimation of the exponent in the Tauc equation directly from the UV–vis spectra is presented. It is based on the Taylor expansion of the logarithmic version of the Tauc equation. The Tauc exponent is calculated from the tangent slope of the absorption data. Knowledge of this coefficient provides information about the optical transition types and is used as an input for the calculations...
-
Crystal structure, chemical bonding, and physical properties of layered AIrSn2 (A = Sr and Ba)
PublicationWe report the experimental and theoretical investigation of structure, chemical bonding interactions, and physical properties of new ternary stannides AIrSn2 (A = Sr and Ba). AIrSn2 (A = Sr and Ba) crystallizes in the orthorhombic Re3B-type structure with the space group Cmcm (No. 64). According to single-crystal X-ray diffraction results, the structure of AIrSn2 (A = Sr and Ba) can be considered as a Zintl-type compound with heterogeneous...
-
Spin-Resolved Band Structure of Hoffman Clathrate [Fe(pz)2Pt(CN)4] as an Essential Tool to Predict Optical Spectra of Metal–Organic Frameworks
PublicationParamount spin-crossover properties of the 3D-Hoffman metalorganic framework (MOF) [Fe(pz)2Pt(CN)4] are generally described on the basis of the ligand field theory, which provides adequate insight into theoretical and simulation analysis of spintronic complexes. However, the ligand field approximation does not take into account the 3D periodicity of the actual complex lattice and surface effects and therefore cannot predict a full-scale...
-
Noncentrosymmetric Triangular Magnet CaMnTeO6: Strong Quantum Fluctuations and Role of s0 versus s2 Electronic States in Competing Exchange Interactions
PublicationNoncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangular S = 3/2 magnet CaMnTeO6 is created based on careful chemical and physical considerations. The model material...
-
House dust as a source of analytical information on concentration of polybrominated diphenyl ethers (PBDEs) - first approach
PublicationPolybrominated diphenyl ethers (PBDEs), which are best recognized as flame retardants, were in 2001, by virtue of Stockholm Convention, listed in a group of Persistent Organic Compounds (POPs). Increasing concentration levels of PBDEs, reported in human tissues (e.g., blood, serum, breast milk, etc.) haverecently caught worldwide concern due to their potential tendency to disrupt thyroid hormones, neurobehavioral deficits and endocrine...
-
Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants
PublicationRapid industrial and urban development jointly with rising global population strongly affect the large-scale issues with drinking, groundwater, and surface water pollution. Concerns are not limited to environmental issues but also human health impact becoming serious global aspect. Organic pollution becomes a primarily serious hazard, therefore, the novel sophisticated approaches to treat them are thoroughly investigated. Among...
-
Recent Advances in Loop Heat Pipes with Flat Evaporator
PublicationThe focus of this review is to present the current advances in Loop Heat Pipes (LHP) with flat evaporators, which address the current challenges to the wide implementation of the technology. A recent advance in LHP is the design of flat-shaped evaporators, which is better suited to the geometry of discretely mounted electronics components (microprocessors) and therefore negate the need for an additional transfer surface (saddle)...
-
Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes
PublicationTitanium dioxide nanotubes gain considerable attention as a photoactive material due to chemical stability, photocorrosion resistance, or lowcost manufacturing method. This work presents scalable pulsed laser modification of TiO2 nanotubes resulting in enhanced photoactivity in a system equipped with a motorized table, which allows for modifications of both precisely selected and any-large sample area. Images obtained from scanning...
-
Coplanar Waveguide-Fed Broadband Microwave Devices with (or without) a Thin Dielectric Substrate for Use in Flexible Electronic Systems
PublicationTwo examples of microwave devices, fed by a coplanar waveguide and realized on a thin substrate (or without such a substrate), are employed to investigate the influence of devices’ curvatures and the proximity of different materials on their parameters. To perform the tests, a broadband antenna and a low-pass filter are chosen. A feeding coplanar waveguide is realized on a dielectric material brick attached to an SMA connector...
-
Physical properties of polyazomethine thin films doped with iodine
PublicationPurpose: The aim of this paper is to show influence of doping 1,4-phenylene-methylenenitrilo-1,4-phenylenenitrilomethylene (PPI) with iodine and to propose doping mechanism and its impact on electronicstructure of doped PPI thin films.Design/methodology/approach: Influence of iodine doping on electronic structure of polyazomethine thinfilms was investigated. Optical absorption spectra, XRD spectra and AFM images of doped PPI...
-
A modified DC Hebb–Wagner polarization method for determining the partial protonic electrical conductivity in mixed-conducting BaGd0.3La0.7Co2O6−δ
PublicationIn this work, partial protonic conductivity in mixed conducting (BZCY721) and BaGd0.3La0.7Co2O6−d (BGLC137) was studied. For this purpose, a modified DC Hebb–Wagner polarization method was used. A four-wire type of galvanic cell as well as a suitable calculation model was applied. The method was validated using proton conducting electrolyte – BaZr0.7Ce0.2Y0.1O3−d – as a reference material. For the first time, protonic partial conductivity...
-
Surface Roughness Evaluation in Thin EN AW-6086-T6 Alloy Plates after Face Milling Process with Different Strategies
PublicationLightweight alloys made from aluminium are used to manufacture cars, trains and planes. The main parts most often manufactured from thin sheets requiring the use of milling in the manufacturing process are front panels for control systems, housing parts for electrical and electronic components. As a result of the final phase of the manufacturing process, cold rolling, residual stresses remain in the surface layers, which can influence...
-
Designing high-performance asymmetric and hybrid energy devices via merging supercapacitive/pseudopcapacitive and Li-ion battery type electrodes
PublicationWe report a strategic development of asymmetric (supercapacitive–pseudocapacitive) and hybrid (supercapacitive/pseudocapacitive–battery) energy device architectures as generation–II electrochemical energy systems. We derived performance-potential estimation regarding the specific power, specific energy, and fast charge–discharge cyclic capability. Among the conceived group, pseudocapacitor–battery hybrid device is constructed with...
-
Influence of technological conditions on optical properties and morphology of spin-coated PPI thin films
PublicationPurpose: The aim of this paper is to show technical and chemical parameters influence on opticalproperties and morphology of poly (1,4-phenylenemethylenenitrilo- 1,4-phenylenenitrilomethylene) (PPI)thin films prepared by spin-coating methodDesign/methodology/approach: PPI thin films were prepared by spin-coating method with variousspinning rates and molar concentrations. The monomers, terephthal aledehyde (TPA) and p-phenylenediamine(PPDA),...
-
Gas sampling system for matrix of semiconductor gas sensors
PublicationSemiconductor gas sensors are popular commercial sensors applied in numerous gas detection systems. They are reliable, small, rugged and inexpensive. However, there are a few problem limiting the wider use of such sensors. Semiconductor gas sensor usually exhibits a low selectivity, low repeatability, drift of response, strong temperature and moisture influence on sensor properties. Sample flow rate is one of the parameters that...
-
Enhancement of the Magnetic Coupling in Exfoliated CrCl 3 Crystals Observed by Low‐Temperature Magnetic Force Microscopy and X‐ray Magnetic Circular Dichroism
PublicationMagnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by...
-
Gas Composition Influence on the Properties of Boron-Doped Diamond Films Deposited on the Fused Silica
PublicationThe main subject of this study are molecular structures and optical properties of boron-doped diamond films with [B]/[C] ppm ratio between 1000 and 10 000, fabricated in two molar ratios of CH 4 -H 2 mixture (1 % and 4 %). Boron-doped diamond (BDD) film on the fused silica was presented as a conductive coating for optical and electronic purposes. The scanning electron microscopy images showed homogenous and polycrystalline surface...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Insight into (Electro)magnetic Interactions within Facet-Engineered BaFe12O19/TiO2 Magnetic Photocatalysts
PublicationA series of facet-engineered TiO2/BaFe12O19 composites were synthesized through hydrothermal growth of both phases and subsequent deposition of the different, faceted TiO2 nanoparticles onto BaFe12O19 microplates. The well-defined geometry of the composite and uniaxial magnetic anisotropy of the ferrite allowed alternate interfaces between both phases and fixed the orientation between the TiO2 crystal structure and the remanent...
-
Structural Properties and Water Uptake of SrTi1−xFexO3−x/2−δ
PublicationIn this work, Fe-doped strontium titanate SrTi1−xFexO3−x/2−δ, for x = 0–1 (STFx), has been fabricated and studied. The structure and microstructure analysis showed that the Fe amount in SrTi1−xFexO3−x/2−δ has a great influence on the lattice parameter and microstructure, including the porosity and grain size. Oxygen nonstoichiometry studies performed by thermogravimetry at different atmospheres showed that the Fe-rich compositions...
-
Ryszard Jan Barczyński dr hab. inż.
PeopleRyszard Jan Barczyński (b. 24 June 1957 in Gdańsk), Polish scientist, engineer, a specialist in solid state physics and electronic measurement techniques. In 1976, he obtained a high school diploma in the IV High School Tadeusz Kosciuszko in Torun. Higher education he graduated in 1981 at the Institute of Physics, Technical University of Gdansk in specialty of solid state physics, obtaining master's degree in engineering. Since...
-
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
PublicationShape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The...
-
Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges
PublicationThe potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device...
-
Jolanta Kowal dr hab.
PeopleJolanta Kowal has a Post-doctoral Degree in Social Sciences (dr hab., DSc) in the field of economics and finance, an assistant professor, researcher, and lecturer in the Institute of Psychology of Wroclaw University, and a professor of the Gdańsk University of Technology, Poland, a Jungian analyst. Jolanta from 2014 held functions in the Board of the Polish Chapter of the Association for Information Systems (PLAIS) (President 2015-2018,...
-
Crystal structure and physical properties of AePd1-xP1+x (Ae = Ca, Sr)
PublicationWe report the discovery of two new compounds AePd1-xP1+x (Ae = Ca, Sr) crystallized in different hexagonal structures. Single crystals of AePd1-xP1+x (Ae = Ca, Sr) are obtained using the Bi-flux method. Crystallographic analysis by both powder and single crystal X-ray diffraction shows that CaPd1-xP1+x crystallizes in a non-centrosymmetric hexagonal structure with the space group P-6m2 (No.187) and lattice parameters a = b = 4.0391(9)...
-
SrCe0.9In0.1O3-δ-based reversible symmetrical Protonic Ceramic Cell
PublicationIn-doped SrCe0.9In0.1O3-δ (SCI) perovskite-type oxide is utilized as the solid electrolyte, as well as a component, together with SrFe0.75Mo0.25O3-δ (SFM) compound, in the composite-type electrodes to construct symmetrical Protonic Ceramic Fuel Cells (PCFC). With good mutual stability of SCI and SFM at high temperatures in water vapor-containing reducing and oxidizing conditions, as well as sufficient ionic conductivity with high...
-
AFM-assisted investigation of conformal coatings in electronics
PublicationPurpose – This paper aims to presents a new method of investigation of local properties of conformal coatings utilized in microelectronics. Design/methodology/approach – It is based on atomic force microscopy (AFM) technique supplemented with the ability of local electrical measurements, which apart from topography acquisition allows recording of local impedance spectra, impedance imaging and dc current mapping. Potentialities...
-
Electrical characterization of diamond/boron doped diamond nanostructures for use in harsh environment applications
PublicationThe polycrystalline boron doped diamond (BDD) shows stable electrical properties and high tolerance for harsh environments (e.g. high temperature or aggressive chemical compounds) comparing to other materials used in semiconductor devices. In this study authors have designed electronic devices fabricated from non-intentionally (NiD) films and highly boron doped diamond structures. Presented semiconductor devices consist of highly...
-
Superconducting SrSnP with Strong Sn–P Antibonding Interaction: Is the Sn Atom Single or Mixed Valent?
PublicationThe large single crystals of SrSnP were prepared using Sn self-flux method. The superconductivity in the tetragonal SrSnP is observed with the critical temperature of ∼2.3 K. The results of a crystallographic analysis, superconducting characterization, and theoretical assessment of tetragonal SrSnP are presented. The SrSnP crystallizes in the CaGaN structure type with space group P4/nmm (S.G. 129, Pearson symbol tP6) according...
-
Self-standing Nanoarchitectures
PublicationDespite there are structures invisible for the human eye, they mastered the world of advanced electronic devices, sensors, novel cosmetics or drugs. When the dimensions of the materials go down to the nanometres scale, their properties change dramatically comparing to the observable objects. Because of their tiny size, they gained the name of nanomaterials but simultaneously their importance has significantly grown up. Nanomaterials...
-
Agnieszka Szymik mgr
PeopleAgnieszka Szymik is a senior librarian at Gdańsk University of Technology Library in Scientific Information Services. Agnieszka graduated from Jagiellonian University in Cracow with a major in Information and Library Science, specializing in Digital Resources and Electronic Publishing. Currently, she manages the Open Access Repository MOST Wiedzy (Bridge of Knowledge) and provides data for the database of copyright and Open Access...
-
The effect of Fe on chemical stability and oxygen evolution performance of high surface area SrTix-1FexO3-δ mixed ionic-electronic conductors in alkaline media
PublicationDevelopment of environmentally friendly, high performing oxygen evolution reaction (OER) catalysts is an important research challenge. In this work, iron doped strontium titanates with a general formula SrTi1-xFexO3-δ (x = 0.35, 0.50, 0.70, 0.90, and 1.00) denoted as STFx, were synthesized via a solid state reaction technique and characterized in terms of oxygen evolution reaction electrocatalysis in an alkaline electrolyte (0.1...
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublicationIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Experimental evidence of the excited-state mixing in the blue emitter for organic light-emitting diodes
PublicationHigh hopes have been placed on organic emitters, which are supposed to solve the problem of low stability of blue OLEDs. A peculiar phenomenon of thermally activated delayed fluorescence (TADF), which brought such emitters to the range of the top-studied materials for organic optoelectronics within the last decade, remains poorly understood. Here, we report the results of comprehensive photophysical studies of one of the most successful...
-
Unravelling the role of electron–hole pair spin in exciton dissociation in squaraine-based organic solar cells by magneto-photocurrent measurements
PublicationA high absorption coefficient and narrow absorption bands in squaraine (SQ) dyes have resulted in rapidly growing interest in them as a donor material in photovoltaic devices. The exciton dissociation process in organic systems proceeds via a multistep mechanism where the electron–hole pairs (charge transfer states) involved in the current generation process determine the recombination losses and subsequently limit the overall...
-
Implementing an Analytical Model to Elucidate the Impacts of Nanostructure Size and Topology of Morphologically Diverse Zinc Oxide on Gas Sensing
PublicationThe development of state-of-the-art gas sensors based on metal oxide semiconductors (MOS) to monitor hazardous and greenhouse gas (e.g., methane, CH4, and carbon dioxide, CO2) has been significantly advanced. Moreover, the morphological and topographical structures of MOSs have significantly influenced the gas sensors by means of surface catalytic activities. This work examines the impact of morphological and topological networked...
-
Two-Dimensional CrCl3-Layered Trihalide Nanoflake Sensor for the Detection of Humidity, NO2, and H2
PublicationThis study demonstrates that few-layer two-dimensional (2D) CrCl3 transition-metal trihalides (TMTHs; MX3, where M = Ti, V, Cr, Mo, Fe, Ru, and X = Cl, Br, or I) exhibit promising capabilities as chemoresistive sensors for humidity and NO2, H2, and NH3 gases, representing suitable 2D interfaces for gas-sensing applications. Liquid-phase-exfoliated 2D-CrCl3 flakes spin-coated over interdigital substrates exhibit higher chemical...
-
Antimony substituted lanthanum orthoniobate proton conductor – structure and electronic properties.
PublicationX‐ray and neutron diffraction have been utilized to analyze the crystalline and electronic structure of lanthanum orthoniobate substituted by antimony. Using X‐ray absorption spectroscopy and photoelectron spectroscopy, changes in the electronic structure of the material upon substitution have been analyzed. The structural transition temperature between fergusonite and scheelite phases for 30 mol% antimony substitution was found...
-
Prospects of ionic liquids application in electronic and bioelectronic nose instruments
PublicationThis paper addresses the problem of application of ionic liquids to chemical sensors and biosensors being an integral part of the electronic and bioelectronic-type instruments. The design and principle of operation of the electronic and bioelectronic noses are compared. Both the benefits and shortcomings of the application of ionic liquids in these type of instruments are described. The prospects of the development and application...
-
Li nucleation on the graphite anode under potential control in Li-ion batteries
PublicationApplication of Li-ion batteries in electric vehicles requires improved safety, increased lifetime and high charging rates. One of the most commonly used intercalation anode material for Li-ion batteries, graphite, is vulnerable to Li nucleation, a side reaction which competes with the intercalation process and leads to loss of reversible capacity of the battery, ageing and short-circuits. In this study, we deploy a combined grand...
-
Discrimination of selected fungi species based on their odour profile using prototypes of electronic nose instruments
PublicationThe paper presents practical application of an electronic nose technique to fast and efficient discrimination of the samples of different fungi species such as: Penicillium chrysogenum, Cladosporium herbarum, Rhizopus oryzae, Alternaria alternata. Two prototypes of electronic nose instrument were utilized for investigation of discrimination capability with respect to odour profile of these fungi: the first prototype was based on...
-
Schematiclab.com – A web tool for the design and analysis of electrical circuits
PublicationIn this paper a useful Internet application for designing electronic systems is considered. A practical process of prototyping electronic devices by using such a dedicated web tool, hereinafter referred to as SchematicLab, is described. This solution, still in constant development, is now ready for use.
-
Capillary pumped loop as a tool for collecting large heat fluxes from electronic devices on warships
PublicationThe combat potential of future warships will be directly related to the use of modern electronic devices being parts of advanced systems, such as, for instance, radar systems, fire aiming systems, fire detection systems, electric drive systems, and even electronic and radio-electronic weaponry, railguns and lasers, installed on these warships. The capacity and functionality of these devices is continually increasing, at decreasing...
-
The Use of Electronic Nose for Sunflower and Rapeseed Oil Classification
PublicationThe electronic nose is an analytical device often used in food industries to examine the authenticity of their products. The use of the electronic nose allows for a rapid assessment of the quality of food. The oil samples from sunflower and rapeseed were used in this study. Both oil samples were kept inside the thermostat incubator at different ranging from 20oC to 180oC with increment of 40oC. Principal Component Analysis (PCA)...
-
The Use of Electronic Nose for Sunflower and Rapeseed Oil Classification
PublicationThe electronic nose is an analytical device often used in food industries to examine the authenticity of their products. The use of the electronic nose allows for a rapid assessment of the quality of food. The oil samples from sunflower and rapeseed were used in this study. Both oil samples were kept inside the thermostat incubator at different ranging from 20oC to 180oC with increment of 40oC. Principal Component Analysis (PCA)...
-
Decision making techniques for electronic communication: an example for Turkey
PublicationCommunication is the way for people exchanging information with each other by using various tools. Electronic communication or Ecommunication is the process of sending, receiving and processing information or messages electronically. Electronic communication that is closely related to the development levels of countries, has made considerable progress especially in terms technology, innovation and entrepreneur. In this study, it...