Filters
total: 453
Search results for: WASTE GENERATION
-
Microcrystalline Cellulose Management in the Production of Poly(ether-urethane)s- Structure, Morphology, and Thermal Characteristic
PublicationIn response to the demand of polymer industry for reducing the use of synthetic chemicals, eco-friendly materials are investigated. In the presented study, bio-based poly(ether-urethane)s were prepared by using microcrystalline cellulose (MCC) and polyether polyol and 1,3-propanediol derived from corn sugar. A step towards sustainability was taken by incorporating bio-based compounds and cellulose, consequently, bio-waste are utilized...
-
Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids – A review
PublicationIncreasing energy demands require exploring renewable, eco-friendly (green), and cost-effective energy resources. Among various sources of biodiesel, microalgal lipids are an excellent resource, owing to their high abundance in microalgal biomass. Transesterification catalyzed by advanced materials, especially nanomaterials and metal-organic frameworks (MOFs), is a revolutionary process for overcoming the energy crisis. This review...
-
Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies
PublicationThe purpose of this work focuses on the production and investigations of a new composite material as alternative low-cost adsorbent for the removal of crystal violet (CV) dye from waste solution. The production method was performed by in-situ thermal activation technology via extrusion process of polymer wastes containing tire rubber (50 wt%) and polyurethane foam (50 wt%) using single-screw extruder under processing temperature...
-
Seasonal and spatial differences in metal and metalloid concentrations in the snow cover of Hansbreen, Svalbard
PublicationMetals and metalloids in snow on glaciers, depending on the season of deposition, may come from various sources: local rock dust (erosion of the geological substratum), marine aerosol, local human activity (e.g. fuel combustion, waste incineration) and long-range atmospheric transport. Hansbreen glacier, located close to the Polish Polar Station in Svalbard, is a perfect site to study metals and metalloids: it has complex geological...
-
Removal of indicator bacteria from treated wastewater using physical and chemical methods. Pilot plant study.
PublicationEven after highly efficient biological processes the effluents from wastewater treatment plants may contain significant number of fecal bacteria, from 104 to 106 CFU/100 mL. Since no standards are set on the bacteriological quality of treated wastewater in Poland the elimination of bacterial contaminants is not a priority in wastewater treatment policy. Thus microbiological hazards become particularly significant in the situation...
-
Properties and applications of thermostable proteases sourced from Deinococcus geothermalis.
PublicationThe growing interest of extremophiles results from the fact that their enzymes arestable and active under harsh environment conditions. These type of biocatalysts are attractivedue to the fact that can be used in industrial processes that were previously regarded asincompatible with biological materials. Among extremozymes the largest group constitutethermozymes. Currently it is estimated that approximately 40% of enzymes used...
-
Review on mechanisms and efficiency of removal of microbiological contaminants in constructed wetlands
PublicationConstructed wetlands (CW) have been considered as a waste and a stormwater treatment systems for small communities or for areas with unsteady sewage flow conditions. Several investigations were undertaken for estimation suspended solids, organic matter and nutrients efficiency removal but only few focused on retention of microorganisms in constructed wetlands. In this review mechanisms of elimination of viruses, indicator bacteria...
-
The Course and the Effects of Agricultural Biomass Pyrolysis in the Production of High-Calorific Biochar
PublicationThe thermal pyrolysis of agriculture biomass has been studied in a fixed-bed reactor, wherethe pyrolysis was conducted at a steady temperature of 800◦C. This work analyses the pyrolysisproducts of six agricultural wastes: pistachio husks, walnut husks, sunflower hulls, buckwheat husks,corncobs and coconut shells. The conducted research compared examples of large waste biomassstreams from different parts of the world as a potential...
-
Characterization of diatomaceous earth coated with nitrated asphaltenes as superior adsorbent for removal of VOCs from gas phase in fixed bed column
PublicationAsphaltenes isolated from bitumen possess unusual adsorption characteristics that can be further enhanced by chemical modifications to promote interactions with VOCs’. Herein, nitrated asphaltenes are used as an active layer coated on a surface of a diatomaceous earth, in order to prepare an efficient adsorbent (AsfNitro). Breakthrough experiments with benzene, pyridine, and 1-nitropropane revealed significant increase in adsorption...
-
Application of foam made of post-consumer pet materials for the construction of footbridges
PublicationThe article presents the possibility of application in civil engineering of highly ecological PET foam, manufactured from 100% recycled plastic packaging. It may find uses in construction of numerous engineering structures, such as pedestrian and cycle footbridges. Properly processed waste from post-consumer PET packaging may constitute a quality structural core for use in multilayered composite materials, commonly referred to...
-
Antioxidant and antimicrobial activity of fermented beverages obtained from fruit pomace
PublicationFruit pomace should not be considered as a waste product but as a by-product as it contains a lot of valuable components such as dietary fiber, bioactive compounds and a source of nutrients. The reasonable way to utilize these by-products, both fresh or dried, could be the fermentation of its extracts, leading to beverages with functional properties. In our research, we checked the possibility of using chokeberry, apple and...
-
Selective H2 production from plastic waste through pyrolysis and in-line oxidative steam reforming
PublicationThis study deals with the proposal of pyrolysis and in-line oxidative steam reforming (P-OSR) for plastic waste valorization and assesses the potential of this strategy for the selective production of H2. Overall, the study aims at progressing towards the fine-tuning of the pyrolysis-reforming technology by co-feeding O2. Thus, a multi-point O2 injection system has been developed to ensure a suitable O2 distribution in the reforming...
-
Improving in-situ biomethanation of sewage sludge under mesophilic conditions: Performance and microbial community analysis
PublicationThis research investigated the application of in-situ biological hydrogen methanation within a continuous stirred tank reactor (CSTR) system under mesophilic conditions, with sewage sludge used as the substrate. Two CSTRs with an effective capacity of 5 L were installed and loaded with inoculum sludge with a volatile solid (VS) concentration of 1.2–1.5 %. They were fed mixed waste sludge with an organic loading rate (OLR) of 1.5...
-
Nanoparticle-assisted biohydrogen production from pretreated food industry wastewater sludge: Microbial community shifts in batch and continuous processes
PublicationBiohydrogen production from industrial waste has gained a significant attention as a sustainable energy source. In this study, the enrichment of biohydrogen production from pretreated dissolved air flotation (DAF) sludge, generated from food industry wastewater treatment plants, was investigated using SiO2@Cu-Ag dendrites cor- e–shell nanostructure (NS). The effect of NS on the changes of the microbial community and biohydrogen...
-
Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon
PublicationArsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar...
-
The Environmental Benefits of Photovoltaic Systems: The Impact on the Environment in the Production of Photovoltaic Systems: With a Focus on Metal Recovery
PublicationGreenhouse gases (GHGs) such as carbon dioxide, nitrous oxide and methane, trap heat and energy, thus preventing solar radiation from escaping back into space. As the quantity of greenhouse gases in the atmosphere increases so does the trapped heat and corresponding global temperature. As a result, storms become more violent, droughts more prevalent, glaciers melt, and sea levels rise, to name but a few effects of a rapidly changing...
-
Reinforced Secure Gossiping Against DoS Attacks in Post-Disaster Scenarios
PublicationDuring and after a disaster, the perceived quality of communication networks often becomes remarkably degraded with an increased ratio of packet losses due to physical damages of the networking equipment, disturbance to the radio frequency signals, continuous reconfiguration of the routing tables, or sudden spikes of the network traffic, e.g., caused by the increased user activity in a post-disaster period. Several techniques have...
-
Electrochemical Production of Sodium Hypochlorite from Salty Wastewater Using a Flow-by Porous Graphite Electrode
PublicationThe production of sodium hypochlorite (NaOCl) from salty wastewater using an electrochemical cell has several advantages over other methods that often require hazardous chemicals and generate toxic waste, being more sustainable and environmentally friendly. However, the process of producing sodium hypochlorite using an electrochemical cell requires careful control of the operating conditions, such as the current density, flow rate,...
-
ENVIRONMENTAL ASSESSMENT OF SOLAR CELL MATERIALS
PublicationIn today’s world, fossil fuels, including coal, oil, and gas, are the primary energy sources from which electricity is obtained. As they are exhaustible and their exploitation has a negative impact on the natural environment, they should be, at least partially, replaced by renewable energy sources. One of these sources is solar energy. The use of solar energy releases no CO2, SO2, or NO2 gases, and does not contribute to global...
-
Smart Decisional DNA Technology to Enhance Industry 4.0 Environment in Conjunction with Conventional Manufacturing
PublicationKnowledge-based support has become an indispensable part not only to the traditional manufacturing set-ups but also to the new fast-emerging Industry 4.0 scenario. In this regard, successful research has been performed and extensively reported to develop Decisional DNA based knowledge representation models of engineering object and engineering process called Virtual engineering object (VEO), Virtual engineering process (VEP) and...
-
Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges
PublicationNature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled “Implementing nature-based solutions (NBS) for building a resourceful circular city” has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes...
-
Can bottom sediments be a prospective fertilizing material? A chemical composition analysis for potential reuse in agriculture.
PublicationEvery year huge amounts of bottom sediments are extracted worldwide, which need to be dis-posed. The recycling of bottom sediments for soil fertilization is in line with the long-promoted circular economy policy and enables the use of micro and macronutrients accumulated in sedi-ments for soil fertilization. When considering potential agricultural reuse of the dredge sediments, the first necessary step should be to analyze whether...
-
Challenges in operating and testing loop heat pipes in 500–700 K temperature ranges
PublicationThe potential applications of loop heat pipes (LHPs) are the nuclear power space systems, fuel cell thermal management systems, waste heat recovery systems, medium temperature electronic systems, medium temperature military systems, among others. Such applications usually operate in temperature ranges between 500–700 K, hence it is necessary to develop an LHP system that will meet this requirement. Such a thermal management device...
-
Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber
PublicationIn this work, brewers’ spent grain (BSG) and ground tire rubber (GTR) waste fillers were applied as low-cost reinforcement phase in rigid polyurethane foam (PUR). PUR/BSG/GTR composites were prepared by a single step method, using polyglycerol as partial substitute of commercially available petrochemical polyols. Foaming parameters, chemical structure, dynamic mechanical properties, thermal stability, physico-mechanical properties...
-
Development of nanoscale morphology and role of viscoelastic phase separation on the properties of epoxy/recycled polyurethane blends
PublicationA novel and cost-effective approach towards the modification of epoxy matrix has been developed using recycled polyurethane for the first time without sacrificing any of the intrinsic properties of the resin. Polyurethane, recycled from waste foam by glycolysis process (RPU), was found to be very effective in improving the properties of the thermosetting resin based on Diglycidyl ether of bisphenol-A (DGEBA). The effect of the...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Consumerism in Poland – a fact or a myth?
PublicationPurpose Consumerism, understood as excessive consumption, poses a vital problem in the world, and requires taking appropriate steps and actions in individual countries depending on the extent and nature of this phenomenon. The purpose of this paper is to examine the phenomenon of consumerism in Poland, with partial reference to other EU countries and to answer the question whether there is consumerism as such in Poland. Design/methodology/approach...
-
A novel approach in wood waste utilization for manufacturing of catalyst-free polyurethane-wood composites (PU-WC)
PublicationIn recent decades, due to the increase in environmental awareness and noticeable environmental degradation, the area of wood waste management has attracted increasing attention. The purpose of this study is to develop a new type of highly filled polyurethane wood-composite (PU-WC) by the utilization of large amount of wood wastes without addition of a catalyst. Although wood-plastic composites (WPCs) are widely known, there is...
-
Structure-Property Relationship and Multiple Processing Studies of Novel Bio-Based Thermoplastic Polyurethane Elastomers
PublicationCurrently, the growing demand for polymeric materials has led to an increased need to develop effective recycling methods. This study focuses on the multiple processing of bio-based thermoplastic polyurethane elastomers (bio-TPUs) as a sustainable approach for polymeric waste management through mechanical recycling. The main objective is to investigate the influence of two reprocessing cycles on selected properties of bio-TPUs....
-
Investigation on domestic fruits seed oils in personal care emulsion systems
PublicationThe use of fruit seed oils in personal care products is of significance to both their function and image. Poland is an important processor of fruit products within the EU, and thus has a large availability of seeds from domestic fruits, which are normally considered to be a waste material. Unfortunately, current literature is scarce of the suitability of these oils for topical use in the form of cosmetic emulsions. Published data...
-
Improving the energy balance in wastewater treatment plants by optimization of aeration control and application of new technologies
PublicationThe methods to improve the energy balance of a wastewater treatment plant (WWTP) by optimization of aeration process control and application of innovative nitrogen removal technologies were overviewed in the study. The control of aeration based on the ABAC (Ammonia-Based Aeration Control) system allows not only for significant savings in electricity consumption, but it can also increase the efficiency of the denitrification process....
-
The metabolic activity of denitrifying microorganisms accumulating polyphosphate in response to addition of fusel oil
PublicationThe effect of distillery waste product (fusel oil) as an alternative external organic carbon source (EOCS) was investigated in terms of the metabolic properties of denitrifying polyphosphate accumulating organisms (DPAOs). Samples of the non-acclimated biomass were collected from a local full-scale wastewater treatment plant employing A2/O type bioreactors. The acclimated biomass was obtained after cultivation (with fusel oil added)...
-
Chitosan-coated coconut shell composite: A solution for treatment of Cr(III)-contaminated tannery wastewater
PublicationTannery industry generates a large amount of Cr(III)-contaminated wastewater daily. Unless properly treated, not only this effluent contaminates the water body, but also damages the environment and threatens public health. This batch study investigates the feasibility of chitosan-coated coconut shells as a low-cost material for removing Cr(III) from tannery wastewater. Both chitosan and coconut shell (CS) waste are abundantly available...
-
Renewable Energy in the Pomerania Voivodeship—Institutional, Economic, Environmental and Physical Aspects in Light of EU Energy Transformation
PublicationIn the era of globalization and rapid economic growth, affecting most world economies, increased production and consumption are leading to higher levels of energy production and consumption. The growing demand for energy means that energy resources from conventional sources are not sufficient; moreover, its production generates high costs and contributes to the emission of greenhouse gases and waste. In view of the above, many...
-
Thermomechanical and Fire Properties of Polyethylene-Composite-Filled Ammonium Polyphosphate and Inorganic Fillers: An Evaluation of Their Modification Efficiency
PublicationThe development of new polymer compositions characterized by a reduced environmental impact while lowering the price for applications in large-scale production requires the search for solutions based on the reduction in the polymer content in composites’ structure, as well as the use of fillers from sustainable sources. The study aimed to comprehensively evaluate introducing low-cost inorganic fillers, such as copper slag (CS),...
-
Wastes from Agricultural Silage Film Recycling Line as a Potential Polymer Materials
PublicationThe recycling of plastics is currently one of the most significant industrial challenges. Due to the enormous amounts of plastic wastes generated by various industry branches, it is essential to look for potential methods for their utilization. In the presented work, we investigated the recycling potential of wastes originated from the agricultural films recycling line. Their structure and properties were analyzed, and they were...
-
Review on robust laser light interaction with titania – Patterning, crystallisation and ablation processes
PublicationTitanium dioxide is regarded as a very promising semiconducting material that is widely applied in many everyday-use products, devices, and processes. In general, those applications can be divided into energy or environmental categories, where a high conversion rate, and energy and power density are of particular interest. Therefore, many efforts are being put towards the elaboration of novel production routes, and improving the...
-
The potential of raw sewage sludge in construction industry – A review
PublicationExcess sewage sludge produced in any municipal or industrial wastewater treatment plant becomes a serious problem due to its increasing amount. This increase is related to the improvement of treatment technologies, expansion of sewage systems and the development of new industrial plants. The implementation and development of new technologies related to the utilization of sewage sludge is currently based on treating it as a substrate....
-
Knowledge Safety – Insights from the SME Sector
PublicationPurpose: This paper aims to explore the topic of knowledge safety, defined as the state of knowledge being safe from loss, leakage, attrition, oblivion, waste or theft. The paper first presents a theoretical background and review of previous studies on knowledge loss and ways of overcoming it, and then illustrates the topic of knowledge safety with ten case studies from the small and medium-sized enterprises (SMEs) sector. Methodology:...
-
Nutritional Characterization of Whole Mangosteen Pulp with Seeds and Its Application as an Alternate Functional Ingredient in Crackers
PublicationMangosteen (Garcinia mangostana L.) fruits are high in nutrients and phytochemical compounds. The use of fresh whole mangosteen fruit pulp, including the seeds (MFS), instead of flour and sugar in crackers not only enhances the functional nutritional and medicinal benefits for consumers but also adds value to the products. The study investigated the nutritional value of MFS and then employed MFS to formulate MFS-based crackers...
-
Carbon dioxide sequestration by industrial wastes through mineral carbonation: Current status and perspectives
PublicationMineral carbonation using natural minerals or industrial wastes is a safe and promising strategy for CO2 sequestration. Application of industrial wastes for this purpose has significant ecological and environmental value, which is one of the key green technologies in the global carbon mitigation. This review summarizes the current research status of CO2 mineralization by industrial wastes. This work surveys the mechanisms and capacities...
-
Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization
PublicationPolymer recycling techniques experience a maturity period of design and application. Rubbers comprise a high proportion of polymer wastes, highly flammable and impossible to re-melt. Polymer composites based on ground tire rubber (GTR) and ethylene-vinyl acetate copolymer (EVA) containing carbon black (CB) (1–50 phr), with variable EVA/GTR weight composition (10/90, 25/75, 50/50, 75/25 and 90/10), and processing temperature (Low:...
-
Molecular transformation of dissolved organic matter in manganese ore-mediated constructed wetlands for fresh leachate treatment
PublicationThe organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were...
-
Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications
PublicationWastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges...
-
Preliminary Results from the Removal of Phosphorus Compounds with Selected Sorption Material
PublicationDue to the resources of phosphorous are limited and are exhausted in the next 30 years the management of the resources is become current issue. Most of the phosphorus compounds is lost forever, because it is discharged with sewage into surface waters, causing eutrophication and in this way causing a further problem and challenge. On the other hand, there is a considerable need for phosphorus compounds, primarily in bioavailable...
-
Plastic Debris in the Stomach of the Invasive Signal Crayfish Pacifastacus leniusculus from a Baltic Coastal River
PublicationPollution by plastic debris, widely recognized as a growing global problem [1-3] is caused by the production of synthetic polymers. Over recent years, the production of plastics has increased, while in Europe, fossil-based plastics production has decreased, and recycled plastics production has increased [4]. There are different types of plastics. Some types of plastic ingredients, applied in a wide variety of cosmetics and personal...
-
Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
PublicationThe ship power plants (SPP) are generally based on Diesel engines. Their fuel efficiency is gradually sensible to cyclic air temperatures and drops with their rise. A sustainable performance of ship engines with high fuel efficiency is possible by cooling intake and charge air as two objects in waste heat conversion chillers. The peculiarities of marine engine application are associated with constrained space of machine room. Whereas,...
-
Cement kiln dust
PublicationThe volume of cement production in the world has remained at the level of approxi mately 4.1 billion tons/year. The cement production process is energy intensive and is the world’s leading emitter of carbon dioxide. Therefore, the main activities cement plants are aimed at introducing technologies changes in production of clinkier.The construction industry is responsible for the majority of CO2 emissions to the atmosphere: the...
-
Denitrification Process Enhancement and Diversity of the Denitrifying Community in the Full Scale Activated Sludge System after Adaptation to Fusel Oil
PublicationImplementation of anaerobic digestion of primary sludge in modern wastewater treatment plants (WWTPs) limits the availability of organic carbon for denitrification in conventional nitrification-denitrification (N/DN) systems. In order to ensure efficient denitrification, dosage of the external carbon source is commonly undertaken. However, application of commercial products, such us ethanol or acetate, greatly increases operational...
-
THE STUDY OF WATER POLLUTION OF THE LOWER VISTULA RIVER BY PLASTIC PARTICLES
PublicationSince the beginning of widespread use of plastic its consumption and production has been constantly increasing. As a result of human activity part of waste ends up in our environment and is deposited in each of the elements of the biosphere. These impurities can be in the form of large elements, small particles fragmented to macroscopic level (pellets, facial scrub grains) and the microparticles visible under a microscope. Particularly...