Search results for: optical layers
-
An Optical Low-Coherence System for 2-Dimensional Visualization of Thin Polymer Layers
PublicationW artykule omówiono zasadę działania i przedstawiono podstawowe właściwości systemu OCT (Optical Coherence Tomography). Na przykładzie folii polietylenowej przedyskutowano możliwości wykorzystania systemu do badanie wewnętrznej struktury warstwowej obiektów niebiologicznych. Przedstawiono i omówiono wyniki przeprowadzonych badań nad warstwowymi materiałami przeźroczystymi.
-
Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers
Publication -
Variable Temperature Spectroscopic Ellipsometry as a Tool for Insight into the Optical Order in the P3HT:PC70BM and PC70BM Layers
PublicationTwo combined ellipsometric techniques—variable angle spectroscopic ellipsometry (VASE) and variable temperature spectroscopic ellipsometry (VTSE)—were used as tools to study the surface order and dielectric properties of thin films of a poly(3-hexylthiophene-2,5-diyl) (P3HT) mixture with a fullerene derivative (6,6-phenyl-C71-butyric acid methyl ester) (PC70BM). Under the influence of annealing, a layer of the ordered PC70BM...
-
<title>An optical low-coherence system for 2-dimensional visualization of thin polymer layers</title>
Publication -
Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors
PublicationSuitability of zinc oxide (ZnO) layers grown using Atomic Layer Deposition for operation in optical-fiber extrinsic Fabry-Perot sensors is investigated using a numerical model. Reflectance spectra obtained using the developed model indicate that the application of these layers in optical-fiber extrinsic Fabry-Perot sensors is difficult as it may require a source whose spectrum width is about 300 nm. A series of ZnO layers grown...
-
The silver layers in fiber-optic sensors
PublicationIn this paper a method of application of the silver layers on the surface of an optical fiber was proposed. The optical properties and surface quality of the silver layer was examined by optical microscopy. The reflection and transmission of the sample were investigated. To evaluate the silver mirror it was placed in a fiber optic Fabry-Perot interferometer and the quality of the spectra was analyzed. The commercial mirror was...
-
Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers
PublicationIn this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating...
-
Optical transmission of the Niobium thin films
Open Research DataNiobium thin films with a thickness of 200nm were deposited n a Corning glass substrate by magnetron sputtering method. The optical transmission spectra in a visible light range were.recorded. Investigations showed a good optical transmission thru the layers for each samples, annealed at various temperatures. For measurements samples annealed at 500,...
-
Influence of pulse waves on the transmission of near-infrared radiation in outer-head tissue layers.
PublicationIn this study, we investigate the effect of pulse waves on the transmission of near-infrared radiation in the outer tissue layers of the human head. This effect is important in using optical radiation to monitor brain conditions based on measuring the transmission changes in the near-infrared radiation between the source and the detector, placed on the surface of the scalp. This is because the signal related to the changes in the...
-
Detection of petroleum products using optical coherence tomography
PublicationIn this work, we present a novel method developed for the analysis of the properties of thin layers for detecting petroleum products on a water surface using a commercially available optical coherence tomography (OCT) system. The spectral density analysis of the signal from a spectroscopic OCT (S-OCT) enables us to perform the precision calculation of the thin layer thickness and other properties like homogeneity, and dispersion,...
-
Polarization-dependent optical absorption in phosphorene flakes
PublicationThe interest of 2D materials is constantly increasing because of their very attractive mechanical, electrical and optical parameters. They have been used in many applications, e.g. photodetectors, sensors, modulators, insulators. One of the recently discovered 2D materials is phosphorene. In contrast to graphene, phosphorene has a direct bandgap tuned by numbers of layers in the 2D structure. The phosphorene flakes are strongly...
-
Optical and photoelectrochemical characterization of pulsed laser deposited Bi4V2O11, BICUVOX, and BIZNVOX
PublicationThin layers of three compounds from the BIMEVOX family (Bi4V2O11, Bi2V0.9Cu0.1O5.35, and Bi2V0.9Zn0.1O5.35) were prepared via pulsed laser deposition technique on quartz, silicon, and platinum foil and tested as photoanodes for water photooxidation. The film formation, as well as the crystallization upon heating, was characterized using X-ray diffraction and Raman spectroscopy. The optical properties were investigated using spectroscopic...
-
The low coherence Fabry-Pérot interferometer with diamond and ZnO layers
PublicationThe authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave...
-
Optical properties of polyazomethine with oxygen atom in the backbon
PublicationPurpose: The aim of this paper is to show results of optical measurement performed on poly –(1-(4-methylenephenoxy-1)phenylene-4-methylene-1.4-phenylnenitrylomethylene) (PPI2) polyazomethine thinfilms and to compare with poly - (1.4-phenylenemethylenenitrilo-1.4 phenylenenitrilomethylene) (PPI).Design/methodology/approach: Influence of oxygen atom in the polymer chain on optical properties ofpolyazomethine was investigated....
-
Multi-layered tissue head phantoms for noninvasive optical diagnostics
PublicationExtensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical...
-
Optical and chemical characterization of thin TiNx films deposited by DC-magnetron sputtering
PublicationThin titanium nitride (tinx) films were deposited on silicon substrates by means of a reactive dc-magnetron plasma. Layers were synthesized under various conditions of discharge power and nitrogen flows in two operation modes of the magnetron (the so-called "balanced" and "unbalanced" modes). The optical constants of the tinx films were investigated by spectroscopic ellipsometry (se). X-ray photoelectron spectroscopy (xps) was...
-
Biophotonic low-coherence sensors with boron-doped diamond thin layer
PublicationLow-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublicationOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
Spectroscopic Optical Coherence Tomography for Thin Layer and Foil Measurements
PublicationThe main goal of this research was to assess if it is possible to evaluate the thickness of thin layers (both thin films on the surface and thin layers below the surface of the tested object) and foils using optical coherence tomography (OCT) for thickness assessment under the resolution of the standard commercially available OCT measurement system. In the proposed solution, light backscattered from the evaluated thin layer has...
-
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
PublicationOver the past few years, metal halide perovskite solar cells have made significant advances. Currently, the single-junction perovskite solar cells reach a conversion efficiency of 25.7%. Perovskite solar cells with a wide band gap can also be used as top absorber layers in multi-junction tandem solar cells. We examined the dynamical and thermal stability, electronic structure, and optical features of In2PtX 6 (X = Cl, Br, and I)...
-
Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3 – Optical measurements and FDTD simulations
PublicationThe Au nanostructures have been coated with an ultra-thin films of amorphous aluminium oxide. Optical absorption spectra show the influence of the thickness of Al2O3 on plasmon resonance wavelength. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of this film. It allows control of the optical spectra of the coated particles....
-
Tailoring of Optical Properties of Methacrylate Resins Enriched by HPHT Microdiamond Particles
PublicationDiamond particles have great potential to enhance the mechanical, optical, and thermal properties of diamond–polymer composites. However, the improved properties of diamond–polymer composites depend on the size, dispersibility, and concentration of diamond particles. In the present study, diamond–polymer composites were prepared by adding the microdiamond particles (MDPs) with different concentrations (0.2–1 wt.%) into polymers...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Low-coherence sensors with nanolayers for biomedical sensing
PublicationIn this paper, we describe the fiber optic low-coherence sensors using thin film. We investigated their metrological parameters. Presented sensors were made with the use of standard telecommunication single mode optical fiber (SMF28). Different materials were applied to obtain thick layers, such as boron doped diamond, silver and gold. The thickness of layers used in the experiments ranged from 100 nm to 300 nm. Measurements were...
-
Cavitation Erosion Resistance of Austenitic Stainless Steel after Glow-Discharge Nitriding Process
PublicationThis paper presents investigation of cavitation erosion resistance of nitrided austenitic stainless steel X5CrNi18-10. The diffusion layers were produced by using different parameters of atmosphere (N2:H2). The microstructure, chemical composition and phase identification of the modified layer were examined using scanning electron microscopy, glow-discharge optical emission spectrometer and X-ray diffractometry, respectively. Cavitation...
-
Cross-sectional imaging of materials structure using PS-OCT
PublicationOptical low-coherence tomography is a measurement technique for non-contact and non-destructive investigation of materials inner structure. Nowadays, this method is highly applied in medical treatment especially in dermatology and ophthalmology. During our research we have developed an optical low-coherence tomography system with polarization state analysis for structure examination of a broad range of technical materials. In this...
-
Chromogeniczne pochodne azoli jako składniki warstw receptorowych czujników optycznych
PublicationGłównym celem badań prowadzonych w ramach studium doktoranckiego była synteza oraz badanie właściwości chromogenicznych pochodnych azoli, makrocyklicznych i acyklicznych, jako składników warstw receptorowych czujników optycznych. Otrzymane związki zawierają w swojej strukturze resztę heterocykliczną – azol, który może uczestniczyć w tworzeniu kompleksów z jonami metali ciężkich oraz co najmniej jedno ugrupowanie azowe. Obecność...
-
Study of Photovoltaic Devices with Hybrid Active Layer
PublicationThe aim of this work is to present the influences of composition of the material andmanufacturing technology conditions of the organic photovoltaics devices (OPv) with the organicand hybrid bulk heterojunction on the active layers properties and cells performance. The layers wereproduced by using small molecular compounds: the metal-phthalocyanine (MePc) and perylenederivatives (PTCDA) and the titanium dioxide (TiO2) nanoparticles....
-
Investigations of morphology and optical properties of thin films of TiOPc/PTCDA donor acceptor couple
PublicationPurpose: The aim of this work is studying surface topography and optical properties of organic thin films ofTiOPc and PTCDA blends deposited by thermal vacuum evaporation.Design/methodology/approach: Thin films of blends of organic materials are provided as donor/acceptorcouples in bulk heterojunction based organic solar cells. Thin films of TiOPc - PTCDA mixture have beendeposited by thermal vacuum evaporation from one source...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Spectral reflectance and transmission modeling of multi-cavity Fabry-Pérot interferometer with ZnO thin films
PublicationIn this paper spectral reflectance and transmission of a low-coherence fiber-optic Fabry-Pérot interferometer with thin ZnO layers is analyzed using a multi-cavity approach. In the investigated setup two standard single-mode optical fibers (SMF-28) with thin ZnO films deposited on their end-faces form an extrinsic Fabry-Pérot interferometer with air cavity. Calculations of the spectral response of the interferometer were performed...
-
The changes of outlet gases concentrations from SOFC with Ce(Pr,Sm)O2-s layers
Open Research DataThe dataset includes The changes of outlet gases concentrations from SOFC with Ce(Pr,Sm)O2-s layers. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding.
-
Nano-particle doped hydroxyapatite material evaluation using Spectroscopic Polarization Sensitive Optical Coherence Tomography
PublicationBio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp....
-
Application of boron-doped diamond film and ZnO layer in the Fabry-Pérot interferometer
PublicationIn this article there have been presented the use of boron-doped diamond films for sensor applications. The low-finesse Fabry-Pérot interferometer working in the reflective mode has been implemented. Two kinds of reflective layers have been elaborated: boron-doped diamond thin films and zinc-oxide (ZnO) layer. Thin ZnO layers were deposited by Atomic Layer Deposition (ALD) on the face of a standard telecommunication single-mode...
-
Influence of Surface Laser Treatment on Mechanical Properties and Residual Stresses of Titanium and its Alloys
PublicationSurface modification of the titanium and its alloys used in implantology with a long-pulse laser can change the surface topography, but it also leads to changes in the stress sign and magnitude in the resulting subsurface layer. The presented research was aimed at evaluating the state of stress after laser remelting with the Nd:YAG laser of pre-etched titanium alloys Ti6Al4V and Ti13Nb13Zr and pure titanium. The obtained surface...
-
Influence of LCVD technologicalparameters on propertiesof polyazomethine thin films
PublicationPurpose: The aim of this paper is to show influence of technological parameters (temperature and gas streamintensity) of low-temperature chemical vapour deposition (LCVD) on optical properties and morphology ofpolyazomethine thin films.Design/methodology/approach: Thin layers of poly (1,4-phenylene-methylenenitrilo-1,4-phenylenenitrilo-methylene) (PPI) were prepared by low temperature LCVD method with use of argon as a transport...
-
Investigation of the Few‐Layer Black Phosphorus Degradation by the Photonic Measurements
PublicationFew-layer black phosphorus (FLBP) is a 2D material that gains worldwide interest for its possible applications, mainly in electronics and optoelec-tronics. However, as FLBP is prone to a degradation process under envi-ronmental conditions, there is a need for a monitoring method allowing investigation of its surface quality. Among many techniques, optoelectronic ones have unique advantages of fast response, non-contact, and non-invasive...
-
Measuring the density of DNA films using ultraviolet-visible interferometry
PublicationIn order to determine a proper value for the density of dry DNA films we have used a method based upon the measurement of interference effects in transmission spectra of thin DNA layers. Our results show that the methodology is effective and the density of DNA in this state, 1.407 g/cm3, is much lower than the commonly used 1.7 g/cm3. Obtaining accurate values for the DNA film density will allow the optical constants for DNA to...
-
Influence of Annealing Atmospheres on Photoelectrochemical Activity of TiO2 Nanotubes Modified with AuCu Nanoparticles
PublicationIn this article, we studied the annealing process of AuCu layers deposited on TiO2 nanotubes (NTs) conducted in various atmospheres such as air, vacuum, argon, and hydrogen in order to obtain materials active in both visible and UV–vis ranges. The material fabrication route covers the electrochemical anodization of a Ti plate, followed by thin AuCu film magnetron sputtering and further thermal treatment. Scanning electron microscopy...
-
Coherent-wave Monte Carlo method for simulating light propagation in tissue
PublicationSimulating propagation and scattering of coherent light in turbid media, such as biological tissues, is a complex problem. Numerical methods for solving Helmholtz or wave equation (e.g. finite-difference or finite-element methods) require large amount of computer memory and long computation time. This makes them impractical for simulating laser beam propagation into deep layers of tissue. Other group of methods, based on radiative...
-
Laser induced formation of copper species over TiO2 nanotubes towards enhanced water splitting performance
PublicationWe proposed fast and scalable route where the ordered TiO2 nanotubes coated with thin copper layers were annealed by the laser beam of 355 nm wavelength at different fluencies in the range of 15–120 mJ/cm2. As a result, copper species are integrated with the titania substrate and the formed material exhibits unique optical absorption bands in the visible range. Moreover, X-ray photoelectron spectroscopy analysis reveals the formation...
-
Physical properties of polyazomethine thin films doped with iodine
PublicationPurpose: The aim of this paper is to show influence of doping 1,4-phenylene-methylenenitrilo-1,4-phenylenenitrilomethylene (PPI) with iodine and to propose doping mechanism and its impact on electronicstructure of doped PPI thin films.Design/methodology/approach: Influence of iodine doping on electronic structure of polyazomethine thinfilms was investigated. Optical absorption spectra, XRD spectra and AFM images of doped PPI...
-
Wpływ azotowania jarzeniowego i laserowego nadtapiania na odporność kawitacyjną stali X5CrNi18-10
PublicationNierdzewne stale austenityczne charakteryzują się doskonałą odpornością korozyjną, aczkolwiek niskimi właściwościami mechanicznymi. W wielu przypadkach ogranicza to ich eksploatację w warunkach przemysłowych. Ponadto, nierdzewne stale austenityczne są wrażliwe na korozję lokalną w obecności jonów halogenkowych. Technologie materiałowe, które dają potencjalne możliwości otrzymywania korzystnego wpływu na właściwości mechaniczne...
-
Studies on optical transmittance of boron-doped nanocrystalline diamond films
PublicationThickness is one of the most important parameters in many applications using thin layers. This article describes thickness determination of a boron-doped nanocrystalline diamond (NCD) grown on fused silica glass. A spectroscopic measurement system has been used. A high refractive index (2.3 at 550nm) was achieved for NCD films. The thickness of NCD samples has been determined from the transmission spectrum.
-
Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants
PublicationSurface modification is used to extend the life of implants. To increase the corrosion resistance and improve the biocompatibility of metal implant materials, oxidation of the Ti-13Nb- 13Zr titanium alloy was used. The samples used for the research had the shape of a helix with a metric thread, with their geometry imitating a dental implant. The oxide layer was produced by a standard electrochemical method in an environment of...
-
Temperature-controlled nanomosaics of AuCu bimetallic structure towards smart light management
PublicationGold–copper nanostructures are promising in solar-driven processes because of their optical, photocatalytic and photoelectrochemical properties, especially those which result from the synergy between the two metals. Increasing interest in their internal structure, such as the composition or distribution of the Au and Cu as well as the size and shape of the nanoparticles, have developed to define their physicochemical properties. In...
-
Statistics of AFM current-voltage curves
Open Research DataMapping surface electrical conductivity offers enormous cognitive possibilities regarding the structure and properties of modern materials. The technique invented for this purpose (Conductive AFM) by Murrel's team and colleagues allows independent monitoring of the local conductivity of materials in correlation with the topographic profile. The mentioned...
-
Optoelectronic system for investigation of cvd diamond/DLC layers growth
PublicationDevelopment of the optoelectronic system for non-invasive monitoring of diamond/DLC (Diamond-Like-Carbon) thin films growth during μPA ECR CVD (Microwave Plasma Assisted Electron Cyclotron Resonance Chemical Vapour Deposition) process is described. The system uses multi-point Optical Emission Spectroscopy (OES) and long-working-distance Raman spectroscopy. Dissociation of H2 molecules, excitation and ionization of hydrogen atoms...