Filters
total: 447
filtered: 409
Search results for: charge transfer
-
Unraveling a novel microwave strategy to fabricate exposed {001}/{101} facets anatase nanocrystals: Potential for use to the elimination of environmentally toxic metronidazole waste
PublicationThis study present a novel microwave strategy to fabricate highly active anatase particles, exposing {101} and {001} facets. Microwave treatment time was shown to determine the growth of crystals in a certain direction. To the best of our knowledge, it is the first report revealing that the contact time of TiO2 crystals with fluorine ions during the microwave process affects the formed morphology, in particular exposed facets ratio....
-
Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56
PublicationSingle crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations...
-
Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte
PublicationComposites based on the titania nanotubes were tested in aqueous electrolyte as a potential electrode material for energy storage devices. The nanotubular morphology of TiO2 was obtained by Ti anodization. TiO2 nanotubes were covered by a thin layer of bismuth vanadate using pulsed laser deposition. The formation of the TiO2/BiVO4 junction leads to enhancement of pseudocapacitance in the cathodic potential range. The third component,...
-
Bis(ammonium) Zoledronate Dihydrate
PublicationNeutralization of 2-(1-imidazole)-1-hydroxyl-1,1`-ethylidenediphosphonic acid (zoledronic acid) by an excess of ammonia yielded bis(ammonium) zoledronate dihydrate, {C5H8N2O7P2 2−, 2(H4N+), 2(H2O)}. The product is readily soluble in water and forms monocrystals for which the X-ray structural analysis was carried out. The zoledronic anion is of double negative charge due to deprotonation of three P–OH groups and protonation of the...
-
Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids
PublicationFluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH...
-
Understanding ion–ion and ion–solvent interactions in aqueous solutions of morpholinium ionic liquids with N-acetyl-L-alaninate anion through partial molar properties and molecular dynamics simulations
PublicationAmino acid ionic liquids (AAILs) provide a low toxicity, biodegradable alternative to conventional ionic liquids, while also maintaining solubility in water. Densities and sound velocities of aqueous solutions of four amino acid ionic liquids (AAILs), based on the N-alkyl-N-methylmorpholinium ([Mor1,R], R = 2, 3, 6, 8) cation and N-acetyl-L-alaninate ([N-Ac-L-Ala]) anion were measured at T = (293.15–313.15) K and at atmospheric...
-
Selected anionic and cationic surface active agents determined in river sediments – the Klodnica catchment
PublicationSurface active agents (SAAs) are specific compounds that contain hydrophilic/ hydrophobic group in their molecules named as amphiphilic structures. According to charge on the hydrophilic part of surfactants they can be classified into three main groups: anionic, cationic and non-ionic compounds. Due to the amphiphilic structure of SAAs they have specific properties (e.g. ability to adsorption at different surfaces, reduction of...
-
Preparation and Characterization of Nanomaterial Consisting of Silica Aerogel & Carbon Tested as an Electrode in Non-Aqueous Media Containing Lithium Salt.
PublicationSilica aerogel (SiO2ag) was combined with carbonaceous material in the pyrolysis process of hydrocarbons. The obtained nanocomposite SiO2ag/C was amorphous, partially preserving the porous structure of SiO2ag. The specific surface area changes from 445.6 m2/g for pure SiO2ag to 205.52 m2/g SiO2ag/C. The 29Si MAS-NMR shows a three-dimensional matrix with silicon atoms connected to other silicon atoms by four...
-
Synthesis and Properties of the Ba2PrWO6 Double Perovskite
PublicationWe report details on the synthesis and properties of barium praseodymium tungstate, Ba2PrWO6, a double perovskite that has not been synthesized before. Room-temperature (RT) powder X-ray diffraction identified the most probable space group (SG) as monoclinic I2/m, but it was only slightly distorted from the cubic structure. X-ray photoelectron spectroscopy confirmed that the initial (postsynthesis) material contained praseodymium...
-
The Effect of C45 Carbon Black-Phosphomolybdic Acid Nanocomposite on Hydrogenation and Corrosion Resistance of La2Ni9Co Hydrogen Storage Alloy
PublicationIn this paper, we analysed the influence of corrosion processes and the addition of a carbon black-heteropoly phosphomolybdic acid (C45-MPA) nanocomposite on the operating parameters of a hydride electrode obtained on the basis of the intermetallic compound La2Ni9Co. The electrochemical properties of negative electrodes for NiMH batteries were studied using galvanostatic charge/discharge curves, the potentiostatic method, and electrochemical...
-
Tin Oxide Encapsulated into Pyrolyzed Chitosan as a Negative Electrode for Lithium Ion Batteries
PublicationTin oxide is one of the most promising electrode materials as a negative electrode for lithium-ion batteries due to its higher theoretical specific capacity than graphite. However, it suffers lack of stability due to volume changes and low electrical conductivity while cycling. To overcome these issues, a new composite consisting of SnO2 and carbonaceous matrix was fabricated. Naturally abundant and renewable chitosan was chosen...
-
Two kinds of oxygen vacancies in lithium titaniate doped with copper as detected by EPR
PublicationLithium titanate (Li1+xTi2-xO4) doped with Cu2+ ions was synthesized by sol-gel processing method. The structure and morphology are characterized by X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Electron Paramagnetic Resonance (EPR). Spin Hamiltonian parameters describing Zeeman and hyperfine interaction for 63Cu2+ ions were obtained from EPR spectra simulations. The spectra...
-
Advanced Lithium-Ion Battery Model for Power System Performance Analysis
PublicationThe paper describes a novel approach in battery storage system modelling. Different types of lithium-ion batteries exhibit differences in performance due to the battery anode and cathode materials being the determining factors in the storage system performance. Because of this, the influence of model parameters on the model accuracy can be different for different battery types. These models are used in battery management system...
-
Bacterial cellulose vs. bacterial cellulose nanocrystals as stabilizer agents for O/W pickering emulsions
PublicationThe growing interest in Pickering emulsions in functional food systems resulted in the need to find suitable stabilizers for them. The work considers the use of bacterial cellulose for this purpose, and its aim was to compare the properties of disintegrated bacterial cellulose, before and after freeze-drying, and its nanocrystals obtained using H2SO4 under variable of time and concentration conditions. The structure of nanocrystals...
-
A Theoretical and Experimental Study of Moderate Temperature Alfa Type Stirling Engines
PublicationThe Stirling engine is a device that allows conversion of thermal energy into mechanical energy with relatively high efficiency. Existing commercial designs are mainly based on the usage of high temperature heat sources, whose availability from renewable or waste heat sources is significantly lower than that of moderate temperature sources. The paper presents the results of experimental research on a prototype alpha type Stirling...
-
THE IDENTIFICATION OF TOXIC COMPOUND EMISSION SENSITIVITY AS A DIAGNOSTIC PARAMETER DURING DYNAMIC PROCESSES OF THE MARINE ENGINE
PublicationChanging some parameters of the engine structure alters the emission of harmful components in the exhaust gas. This applies in particular to the damage of charge exchange system as well as fuel system and engine supercharger. These changes are much greater during the dynamic states and their accompanying transitional processes. The different sensitivity of diagnostic parameters to the same force, coming from the engine structure,...
-
Designing efficient A-D-A1-D-A type fullerene free acceptor molecules with enhanced power conversion efficiency for solar cell applications
PublicationThe achievement of highly efficient power conversion efficiency (PCE) is a big concern for non-fullerene organic solar cells (NF-OSCs) because PCE can depend on numerous variables. Here, new five novel acceptor molecules without fullerenes were developed and investigated using DFT (density functional theory) and TD-DFT (time dependent-density functional theory). Compared to the recently synthesized molecule (PZ-dIDTC6), the developed...
-
Additive Effect of Bromides and Chlorides on the Performance of Perovskite Solar Cells Fabricated via Sequential Deposition
PublicationA two-step sequential deposition method has been applied to prepare the solar cells with two types of perovskites Cs0.15FA0.85Pb(I0.95Cl0.05)3 and Cs0.15FA0.85Pb(I0.95Br0.05)3. In order to obtain the perovskite layers, the different sources of bromine and chlorine atoms were used for synthesis. The performance and time stability of chloride-based photocells are worse in comparison to the bromide-based devices. It can be explained...
-
Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
PublicationThe ship power plants (SPP) are generally based on Diesel engines. Their fuel efficiency is gradually sensible to cyclic air temperatures and drops with their rise. A sustainable performance of ship engines with high fuel efficiency is possible by cooling intake and charge air as two objects in waste heat conversion chillers. The peculiarities of marine engine application are associated with constrained space of machine room. Whereas,...
-
Two-particle entropy and structural ordering in liquid water
PublicationEntropies of simple point charge (SPC) water were calculated over the temperature range 278-363 K using the two-particle correlation function approximation. Then, the total two-particle contribution to the entropy of the system was divided into three parts, which we call translational, configurational, and orientational. The configurational term describes the contribution to entropy, which originates from spatial distribution of...
-
π-Stacking attraction vs. electrostatic repulsion: competing supramolecular interactions in a tpphz-bridged Ru(ii)/Au(iii) complex
PublicationThe synthesis and characterization of a mixed metal ruthenium(II)/gold(III) complex bridged by tetrapyridophenazine (tpphz) are described. It is isostructural and isoelectronic to the well-known photocatalysts with palladium(II) or platinum(II). Concentration dependent 1H-NMR spectroscopy and XRD studies show that the electrostatic repulsion between the gold(III) moieties exceeds the attractive π-stacking interaction. Theoretical...
-
Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates
PublicationIn this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ_{M1→E2}) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 \leqslant Z \leqslant 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid...
-
The valance state of vanadium-key factor in the flexibility of potassium vanadates structure as cathode materials in Li-ion batteries
PublicationPotassium hexavanadate (K2V6O16·nH2O) nanobelts have been synthesized by the LPE-IonEx method, which is dedicated to synthesis of transition metal oxide bronzes with controlled morphology and structure. The electrochemical performance of K2V6O16·nH2O as a cathode material for lithium-ion batteries has been evaluated. The KVO nanobelts demonstrated a high discharge capacity of 260 mAh g−1, and long-term cyclic stability up to 100...
-
Electric and magnetic properties of Lanthanum Barium Cobaltite
PublicationThe cubic Ba0.5La0.5CoO3‐δ was synthesized using solid state reaction. The structural properties were determined by the simultaneous refinement of Synchrotron Powder X‐ray Diffraction and Neutron Powder Diffraction data. Iodometric titration was used to examine the oxygen stoichiometry and average cobalt oxidation state. Low‐temperature magnetic studies show soft ferromagnetic character of fully oxidized material, with θP = 198(3)...
-
Electricity generation from rapeseed straw hydrolysates using microbial fuel cells
PublicationRapeseed straw is an attractive fuel material for microbial fuel cells (MFCs) due to its high content of carbohydrates (more than 60% carbohydrates). This study has demonstrated that reducing sugars can be efficiently extracted from raw rapeseed straw by combination of hydrothermal pretreatment and enzymatic hydrolysis followed by utilization as a fuel in two-chamber MFCs for electrical power generation. The most efficient method...
-
Proton-Electron Hole Interactions in Sr(Ti,Fe)O3−δ Mixed-Conducting Perovskites
PublicationOxides in which total electrical conductivity is determined by the partial conductivities of three types of charge carriers i.e. holes/ electrons, oxygen ions, and protons are key components of well-functioning proton ceramic fuel cells. Apart from electrochemical properties also easily modified microstructure is an important feature of the electrodes. In the paper, a group of SrTi1−xFexO3−δ (STF, x = 0.2–0.8) perovskites prepared...
-
Organic semiconductor rubrene thin films deposited by pulsed laser evaporation of solidified solutions
PublicationOrganic semiconductor rubrene (C42H28) belongs to most preferred spintronic materials because of the high charge carrier mobility up to 40 cm2(V·s)-1. However, the fabrication of a defect-free, polycrystalline rubrene for spintronic applications represents a difficult task. We report preparation and properties of rubrene thin films deposited by pulsed laser evaporation of solidified solutions. Samples of rubrene dissolved in aromatic...
-
Study of Metrological Properties of Voltammetric Electrodes in the Time Domain
PublicationMetrological properties of voltammetric electrodes, in the situation where on their surface an electrochemical reaction of oxidizing/reduction takes place, were analyzed in this chapter. The properties of electrodes on which a reaction controlled by ion transport process takes place were taken into consideration. Also, it was analyzed how the electrode’s shape and the voltage polarizing the electrode influence this electrode’s...
-
Synthesis, microstructure and electrical properties of nanocrystalline calcium doped lanthanum orthoniobate
PublicationThe single phase lanthanum orthoniobate with tetragonal structure has been synthesized by the means of mechanosynthesis method. The studies have shown the crystal structure of La0.98Ca0.02NbO4 depends on the synthesis stage. The samples were predominantly in the tetragonal phase with a trace amount of the monoclinic phase. The SEM studies of morphology and microstructure have shown nanocrystallinity of the materials. The Raman...
-
The influence of nanostructures size on V2O5 electrochemical properties as cathode materials for lithium ion battery
PublicationIn this paper, V2O5 nanostructures with a size depending on the annealing temperature are successfully synthesized by a sol-gel method. The crystal structure and morphology of samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SEAD) and scanning electron microscopy (SEM), respectively. Electrochemical testing such...
-
Local Structure and Stability of SEI in Graphite and ZFO Electrodes Probed by As K-edge Absorption Spectroscopy
PublicationThe evolution of the solid electrolyte interphase (SEI) during the first Li uptake in advanced Li-ion electrodes is studied by X-ray absorption spectroscopy (XAS). The As atoms present in the electrolyte solution were used as a local probe for monitoring the SEI growth on different electrodes. High-quality As K-edge spectra were collected in fluorescence mode for a set of graphite and carbon-coated ZnFe2O4 electrodes. XAS measurements...
-
Superconductivity in CaBi2
PublicationSuperconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is DC/gTc = 1.41, confirming bulk superconductivity;...
-
Superconductivity in the Cu(Ir1-xPtx)2Se4 spinel
PublicationWe report the observation of superconductivity in the CuIr2Se4 spinel induced by partial substitution of Pt for Ir. The optimal doping level for superconductivity in Cu(Ir1-xPtx )2Se4 is x = 0.2, where Tc is 1.76 K. A superconducting Tc vs composition dome is established between the metallic, normal conductor CuIr2Se4 and semiconducting CuIrPtSe4. Electronic structure calculations show that the optimal Tc occurs near the electron count...
-
Mono- and bi-metallic plasmonic photocatalysts for degradation of organic compounds under UV and visible light irradiation
PublicationTitania powders were surface modified with gold and/or silver nanoparticles (NPs) by photodeposition method. Gold modified titania exhibited much higher photocatalytic activity during methanol dehydrogenation under UV irradiation than titania modified with monometallic silver and bimetallic Au–Ag NPs. Bimetallic photocatalysts exhibited either enhanced or reduced visible light activity, depending on properties of noble metal NPs,...
-
Tuning the work function of graphite nanoparticles via edge termination
PublicationGraphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer...
-
Influence of the electrosynthesis conditions on the spontaneous release of anti-inflammatory salicylate during degradation of polypyrrole coated iron for biodegradable cardiovascular stent
PublicationIn this work, the spontaneous release of anti-inflammatory salicylate from polypyrrole (PPy) coated iron has been studied during degradation of the material in phosphate buffer saline at 37 C. The sodium salicylate was incorporated into PPy in a one-step electropolymerization process. The influence of the synthesis conditions such as sodium salicylate concentration, pyrrole concentration and deposition charge on drug release profile...
-
Surface engineering of graphene oxide membranes for selective separation of perfluorooctanoic acids
PublicationPerfluoroalkyl compounds (PFCs) are environmental toxicants and their widespread detection and accumulation in the environment can be detrimental to the ecosystem. In this study, surface charge of GO membranes was engineered to enhance selectivity of graphene oxide (GO) membranes and for the removal of perfluorooctanoic acid (PFOA ∼400 Da) in real concentration ranges in wastewater streams. The structure and physicochemical properties...
-
Application of the Heavy-Atom Effect for (Sub)microsecond Thermally Activated Delayed Fluorescence and an All-Organic Light-Emitting Device with Low-Efficiency Roll-off
PublicationThefeatureof abundantandenvironmentallyfriendlyheavyatoms(HAs)like bromineto acceleratespin-forbiddentransitionsin organicmoleculeshas beenknownforyears.In combinationwiththe easinessof incorporation,brominederivativesof organicemittersshowingthermallyactivateddelayedfluorescence(TADF)emergeas a cheapand efficientsolutionforthe slowreverseintersystemcrossing(rISC)problemin suchemittersand strongefficiencyroll-offof all-organiclight-emittingdiodes(OLEDs).Here,we...
-
Investigating BiMeVOx compounds as potential photoelectrochemical and electrochemical materials for renewable hydrogen production
PublicationIn this study, BiMeVOx compounds (where Me: Co, Mo, Ce, Zr) were synthesized and characterized as potential photoelectrochemical materials for solar water splitting, the hydrogen evolution reaction (HER), and oxygen evolution reaction (OER). The analysis confirmed the successful formation of phase BiMeVOx compounds with the desired crystal structure. Among the tested materials, BiCoVOx(800) showed the highest photocurrent density...
-
Stone cutting industry waste-supported zinc oxide nanostructures for ultrasonic assisted decomposition of an anti-inflammatory non-steroidal pharmaceutical compound
PublicationPowdered stone waste (PSW) obtained from a stone cutting industrial unit was applied as support for the immobilization of nano-sized ZnO to be utilized as an effective catalyst for the catalytic conversion of acetaminophen (ACE) under ultrasonication. The incorporation of ZnO nanostructures into PSW structure enhanced the specific surface area and pore volume of the as-prepared nanocompound. The change in the value of zero point...
-
Silicon oxycarbide-tin nanocomposite derived from a UV crosslinked single source preceramic precursor as high-performance anode materials for Li-ion batteries
PublicationIn this work, we report an innovative and facile UV light-assisted synthesis of a nanocomposite based on silicon oxycarbide (SiOC) and tin nanoparticles. SiOC ceramic matrix, containing a conductive free carbon phase, participates in lithium-ion storage, and buffers the volume changes of Li-alloying/de-alloying material. The reported synthesis procedure through a polymer-derived ceramic route involves the preparation of a single-source...
-
Electrical properties of Na2O-CaO-P2O5 glasses doped with SiO2 and Si3N4
PublicationSodium-calcium-phosphate glasses doped with SiO2 or Si3N4 having similar sodium ion concentrations were prepared by melt quenching. The conductivity was measured by impedance spectroscopy under nitrogen atmosphere in a wide frequency range (10 mHz–1 MHz) and wide temperature range (153–473 K). At 36.6 °C, DC conductivities of all glasses vary between 1.1 ∗ 10−12 and 8.9 ∗ 10−12 S cm−1 and have similar activation energies (between...
-
Are the short cationic lipopeptides bacterial membrane disruptors? Structure-Activity Relationship and molecular dynamic evaluation
PublicationShort cationic lipopeptides are amphiphilic molecules that exhibit antimicrobial activity mainly against Grampositives. These compounds bind to bacterial membranes and disrupt their integrity. Here we examine the structure-activity relation (SAR) of lysine-based lipopeptides, with a prospect to rationally design more active compounds. The presented study aims to explain how antimicrobial activity of lipopeptides is affected by...
-
Stabilization of N-, N,N-, N,N'-Methylated and Unsubstituted Simple Amidine Salts by Multifurcated Hydrogen Bonds
PublicationIn the light of the usefulness of amidines in medicinal chem., this paper considers the effects on biol. properties and chem. reactivities of org. mols. affected by intramol. interactions. The study of chem. shifts has been an important source of information on the electronic structure of amidine salts and their ability to form non-covalent bonds with nucleic acids. The NMR and IR results demonstrate that hydrogen bonds are...
-
CREATING A RANKING OF DIAGNOSTIC PARAMETERS FOR THE DYNAMIC PROCESS OF A MARINE COMBUSTION ENGINE IN THE ASPECT OF MULTI-CRITERIA EVALUATIONS
PublicationThe change of some of the engine’s structural parameters affects the change of toxic compound emission in exhaust gases. It mainly applies to the damage sustained by the charge exchange system as well as the fuel system and the engine supercharging system. These changes are definitely higher during dynamic states and the related transient states. As such, it is possible to speak of a diverse sensitivity of the diagnostic parameters...
-
NEW SOLUTIONS FOR THE SOLAR CHARGE CONTROLLERS DESIGN FOR OBTAINING TRUE MPP IN PARTLY SHADED PV MODULES
PublicationSoft shading sources such as tree limbs, structural elements of buildings and chimneys, scatter and refract sunlight, significantly reducing the amount of radiation reaching the surface of the module. The hard shadings located directly on the surface (i.e. bird droppings, leaves, snow) tend to stop sunlight completely. These phenomena significantly affects the output characteristics of photovoltaic modules and often contribute...
-
Silver-modified titania with enhanced photocatalytic and antimicrobial properties under UV and visible light irradiation
PublicationCommercial titania photocatalysts were modified with 2 wt% of silver by photodeposition. The properties of the samples were characterized by DRS, XPS, XRD, FE-SEM and STEM. The modified samples exhibited activity under visible light and enhanced activity under UV irradiation for 2-propanol and acetic acid oxidation, respectively. The time-resolved microwave conductivity (TRMC) analysis indicated that enhanced activity (2.5–8-fold...
-
Enhanced supercapacitor materials from pyrolyzed algae and graphene composites
PublicationThis study focuses on the synthesis and characterization of supercapacitor materials derived from pyrolyzed natural compounds. Four compounds were investigated: methylcellulose with lysine (ML), methylcellulose with lysine-graphene composite (MLG), algae (A), and algae-graphene composite (AG). The pyrolysis process was utilized to convert these natural compounds into carbon-based materials suitable for supercapacitor applications....
-
Collision Strengths of Astrophysical Interest for Multiply Charged Ions
PublicationThe electron impact excitation and ionization processes are crucial for modeling the spectra of different astrophysical objects, from atmospheres of late-type stars to remnants of supernovae and up to the light emission from neutron star mergers, to name just a few. Despite their signifi- cance, however, little is known quantitatively about these processes for low- and medium-impact energies of, say, Ekin . 5000 eV of the free...
-
Application of safirinium N-hydroxysuccinimide esters to derivatization of peptides for high-resolution mass spectrometry, tandem mass spectrometry, and fluorescent labeling of bacterial cells
PublicationMass spectrometry methods are commonly used in the identification of peptides and biomarkers. Due to a relatively low abundance of proteins in biological samples, there is a need for the development of novel derivatization methods that would improve MS detection limits. Hence, novel fluorescent N-hydroxysuccinimide esters of dihydro-[1,2,4]triazolo[4,3-a]pyridin-2-ium carboxylates (Safirinium P dyes) have been synthesized. The...