Filters
total: 53
filtered: 46
Search results for: FEM MODELLING
-
FEM modelling of screw displacement pile interaction with subsoil
PublicationPredicting the-settlement characteristics of piles is an important element in the designing of pile foundations. The most reliable method in evaluating pile-soil interaction is the static load test, preferably performed with instrumentation for measuring shaft and pile base resistances. This, however, is a mostly post-implementation test. In the design phase, prediction methods are needed, in which numerical simulations play an...
-
FEM modelling of stress and strain distribution in weld joints of steel sandwich panels
PublicationThe development of laser welding technology has enabled the mass production of thin-walled structures, including steel sandwich panels. The technology of joining plating panels with stiffeners by welding allows us to create joints with a specific geometry and material properties. In comparison with other types of joints, laser welds are characterized by their specific behaviour under cyclic load and, as a consequence, a different...
-
FEM-based wave propagation modelling for SHM: Certain numerical issues in 1D structures
PublicationThe numerical modelling of structural elements is an important aspect of modern diagnostic systems. However, the process of numerical implementation requires advanced levels of consideration of multiple aspects. Important issues of that process are the positive and negative aspects of solution applied methods. Therefore the aim of this article is to familiarise the reader with the most important aspects related to the process of...
-
Modelling of concrete fracture at aggregate level using FEM and DEM based on X-ray uCT images of internal structure
PublicationArtykuł podejmuje problem pękania w zginanych belkach betonowych. Proces pękania był obserwowany przy zastosowaniu mikrotomografii . Zaobserwowany proces był symulowany numerycznie przy zastosowaniu metody elementów skończonych i metody elementów dyskretnych. Beton był opisany jako materiał 4-fazowy. Otrzymano dobrą zgodność wyników numerycznych z doświadczalnymi.
-
The effect of numerical 2D and 3D FEM element modelling on strain and stress distributions at laser weld notches in steel sandwich type panels
PublicationLike other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack...
-
Numerical modelling of 3D printout using line (1D) elements
PublicationA proposition of some numerical modelling of the 3D printout is presented in the paper. The proposed model is composed of some 1D elements. The resulting numerical model of the infill consist of beam, spring and rigid elements. Obtained results confirm correctness of the proposed modelling method. Two methods of estimation of the spring parameters are proposed in the paper. In the first method, mechanical properties of the connecting...
-
Numerical Modelling of Structures with Uncertainties
PublicationThe nature of environmental interactions, as well as large dimensions and complex structure of marine offshore objects, make designing, building and operation of these objects a great challenge. This is the reason why a vast majority of investment cases of this type include structural analysis, performed using scaled laboratory models and complemented by extended computer simulations. The present paper focuses on FEM modelling...
-
Finite element modelling of a historic church structure in the context of a masonry damage analysis
PublicationThe paper includes a case study of modelling a real historic church using the finite element method (FEM) based on laser scans of its geometry. The main goal of the study was the analysis of the causes of cracking and crushing of masonry walls. An FEM model of the structure has been defined in ABAQUS. A non-linear dynamic explicit analysis with material model including damage plasticity has been performed. A homogenization procedure...
-
Non-linear FEM analysis of pounding-involved response of buildings under non-uniform earthquake excitation
PublicationThe aim of the paper is to show the results of the study investigating the influence of non-uniform earthquake excitation, due to spatial seismic effects connected with the propagation of seismic wave, on the pounding-involved response of two buildings. The three-dimensional non-linear FEM analysis has been conducted using the detailed models of colliding structures. Acceleration records for different structural supports have been...
-
Modelling of Longitudinal Elastic Wave Propagation in a Steel Rod Using the Discrete Element Method
PublicationThe paper deals with the issue of modelling elastic wave propagation using the discrete element method (DEM). The case of a longitudinal wave in a rod with a circular cross-section was considered. A novel, complex algorithm consisting of the preparation of models and simulation of elastic waves was developed. A series of DEM models were prepared for simulations, differing in discretisation and material parameters. Additional calculations...
-
FEM analysis of composite materials failure in nonlinear six field shell theory
PublicationThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
The impact of the shape of deep drilled well screen openings on the filtration process in full saturation conditions
PublicationThe authors propose a supplementary method of modelling seepage flow around the deep drilled well screen. The study applies 3D numerical modelling (FEM) in order to provide an in-depth analysis of the seepage process. The analysis of filtration parameters (flow distribution q(x,t) and pressure distribution p) was conducted using the ZSoil.PC software system. The analysis indicates that the shape of perforation is of secondary importance...
-
Numerical Modelling of Connections Between Stones in Foundations of Historical Buildings
PublicationThe aim of this paper is to analyse the behaviour of old building foundations composed of stones (the main load-bearing elements) and mortar, based on numerical analysis. Some basic aspects of historical foundations are briefly discussed, with an emphasis on their development, techniques, and material. The behaviour of a foundation subjected to the loads transmitted from the upper parts of the structure is described...
-
Simulation of the switched reluctance drive system
PublicationSwitched reluctance motors (SRM), unlike other types of motors, for their application require a control system and the supply from a power electronic converter. A method of modelling and mathematical model of an SRM in a switched reluctance drive (SRD) system is presented in the paper. Modelling is based on Lagrange's energy method. Coefficients of the Lagrange's equation have been calculated using the finite element method (FEM)....
-
Estimation of Failure Initiation in Laminated Composites by means of Nonlinear Six-Field Shell Theory and FEM
PublicationThe monography deals with the problem of failure initiation in thin laminated composites. Known techniques of laminate structures modelling are briefly characterised. Eventually, shell based approach is chosen for the purpose of the description of the composite structures behaviour, as it predicts their deformation and states of stress effectively in a global sense. The nonlinear six parameter shell theory (6p theory) with asymmetric...
-
A comparative performance assessment of a hydrodynamic journal bearing lubricated with oil and magnetorheological fluid
PublicationThis work presents the investigation results of a journal bearing lubricated with magnetorheological fluid that is activated by a local constant magnetic field to vary both the local flow resistance and pressure. The bearing performance is assessed via Finite Element Modelling (FEM) and results are corroborated by experiments. The FEM model uses the Bingham model to describe the fluid film. A dedicated test rig is used to assess...
-
Selected local stability problems of channel section flanges made of aluminium alloys
PublicationThe paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard cold-formed...
-
Influence of Added Water Mass on Ship Structure Vibration Parameters in Virtual and Real Conditions
PublicationModelling of ship structures in a virtual environment is now standard practice. Unfortunately, many engineers forget to consideri the influence of added water on the frequency values and the amplitude of natural vibrations. The article presents the effect of water damping on the frequency values of the individual natural vibration modes. The tests were carried out in two stages. First, the mentioned values were determined using...
-
Scientific research in the Department of Machine Design and Automotive Engineering
PublicationShort descriptions of various research subjects taken up at the Department of Machine Design and Automotive Engineering are included in the paper. The subjects cover a wide range of bearing systems and tribology research and the research on tires and road surfaces. A third field of activity is biomedical engineering – with the attempts to improve methods of modelling biological materials in FEM calculations. The Department has...
-
Large deformation finite element analysis of undrained pile installation
PublicationIn this paper, a numerical undrained analysis of pile jacking into the subsoil using Abaqus software suit has been presented. Two different approaches, including traditional Finite Element Method (FEM) and Arbitrary Lagrangian–Eulerian (ALE) formulation, were tested. In the first method, the soil was modelled as a two-phase medium and effective stress analysis was performed. In the second one (ALE), a single-phase medium was assumed...
-
Rebuilding Bailey Bridge to Bridge With Bascule Span – A Case Study
PublicationThe structural analysis of a road foldable prefabricated steel Bailey- type bridge located over the Tuga River in Żelichowo, Poland is performed in this paper. Interesting and untypical bridge redevelopment performed made it possible to lift the middle foldable bridge span by approximately 4.0 m concerning the existing state. The paper begins with a survey of literature carried out on the investigations of foldable Bailey-type...
-
Novel analysis methods of dynamic properties for vehicle pantographs
PublicationTransmission of electrical energy from a catenary system to traction units must be safe and reliable especially for high speed trains. Modern pantographs have to meet these requirements. Pantographs are subjected to several forces acting on their structural elements. These forces come from pantograph drive, inertia forces, aerodynamic effects, vibration of traction units etc. Modern approach to static and dynamic analysis should...
-
Fast Design Optimization of Waveguide Filters Applying Shape Deformation Techniques
PublicationThis paper presents an efficient design of microwave filters by means of geometry optimization using shape deformation techniques. This design procedure allows for modelling complex 3D geometries which can be fabricated by additive manufacturing (AM). Shape deforming operations are based on radial basis function (RBF) interpolation and are integrated into an electromagnetic field simulator based on the 3D finiteelement method (FEM)....
-
Pounding Between Superstructure Segments in Multi-Supported Elevated Bridge with Three-Span Continuous Deck Under 3D Non-Uniform Earthquake Excitation
PublicationReports after severe ground motions show that the earthquake-induced structural pounding may lead to significant damage in elevated bridges. The aim of this paper is to analyse pounding between superstructure segments of a highway elevated bridge with three-span continuous deck under 3D non-uniform earthquake excitation, which is induced by spatial seismic effects related to the propagation of seismic wave. The conditional stochastic...
-
A three-dimensional periodic beam for vibroacoustic isolation purposes
PublicationThis paper presents results of investigations on a three-dimensional (3-D) isotropic periodic beam. The beam can represent a vibroacoustic isolator of optimised dynamic characteristics in the case of its longitudinal, flexural and torsional behaviour. The optimisation process concerned both the widths as well as the positions of particular frequency band gaps that are present in the frequency spectrum of the beam. Since the dynamic...
-
Modal analysis of a steel grandstand
PublicationAmong the issues related to the idea of sustainable society is the safety of civil engineering structures devoted to satisfy different needs of people. One of the types of structures devoted to satisfy recreational needs are grandstands, which are used during sport events or music concerts. It is obligatory to consider interaction between structure and crowd load especially when the crowd movement involves rhythmic jumping, dancing,...
-
Numerical analysis of mechanical properties of an infill structure used in 3D printings
PublicationThe paper presents results of a numerical analysis focused on an identification of mechanical properties of an element created by using Fused Deposition Modelling additive manufacturing technique (FDM). There is presented a description of technology of the 3D printing, numerical model created by using the finite element method (FEM), as well as some problems referred to estimation of the mechanical properties of the printout. The...
-
Strength parameters of masonry walls in modelling historic constructions
PublicationThe paper presents the determination of the basic material properties of a historic brickwork. Experimental studies were used to identify the basic material properties of bricks. The mechanical properties of the masonry, as an orthotropic homogenized material, were calculated. Then, numerical simulations using the Finite Element Method (FEM) were performed to verify the experimental outcomes. Macromodels with element sizes of 40,...
-
An Improved Method of Minimizing Tool Vibration during Boring Holes in Large-Size Structures
PublicationThe paper presents a thoroughly modified method of solving the problem of vibration suppression when boring large-diameter holes in large-size workpieces. A new approach of adjusting the rotational speed of a boring tool is proposed which concerns the selection of the spindle speed in accordance with the results of the simulation of the cutting process. This streamlined method focuses on phenomenological aspects and involves the...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublicationThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
A spline-based FE approach to modelling of high frequency dynamics of 1-D structures
PublicationIn this paper a computational methodology leading to the development of a new class of FEs, based on the application of continuous and smooth approximation polynomials, being splines, has been presented. Application of the splines as appropriately defined piecewise elemental shape functions led the authors to the formulation of a new approach for FEM, named as spFEM, where contrary to the well-known NURBS approach, the boundaries...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublicationThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
NUMERICAL MODEL QUALITY ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORTING STRUCTURE BASED ON EXPERIMENTAL DATA
PublicationAs a structure degrades some changes in its dynamical behavior can be observed, and inversely, observation and evaluation of these dynamical changes of the structure can provide information of structural state of the object. Testing of the real structure, besides of being costly, can cover only limited working states. It is particularly considerable in case of hardly accessible, and randomly/severely dynamically loaded offshore...
-
Comparative 3D DEM simulations of sand–structure interfaces with similarly shaped clumps versus spheres with contact moments.
PublicationThree-dimensional simulations of a monotonic quasi-static interface behaviour between initially dense cohesionless sand and a rigid wall of different roughness during tests in a parallelly guided direct shear test under constant normal stress are presented. Numerical modelling was carried out by the discrete element method (DEM) using clumps in the form of convex non-symmetric irregularly shaped grains. The clumps had an aspect...
-
Tensile failure study of 3D printed PLA using DIC technique and FEM analysis
PublicationThe paper presents the experimental and numerical study of the failure behaviour of Fused Filament Fabricated (FFF) Polylactic Acid (PLA) samples subjected to tensile load. The examined samples are printed in flat orientation with 0◦, 45◦ and 90◦ raster angles. During the experiments the deformation of the specimens is continuously scanned with the 3D Aramis measuring system utilizing the digital imaging correlation technique,...
-
SHORT REVIEW AND 3-D FEM ANALYSIS OF BASIC TYPES OF FOUNDATION FOR OFFSHORE WIND TURBINES
PublicationSome problems of the foundations of offshore wind turbines are considered in this paper. A short review is presented on the two basic types of foundations, i.e. monopiles and gravity foundations, including their basic features and applications as well as general design considerations. Also, some issues regarding analysis are discussed, including geotechnical problems and modelling techniques. A numerical model of offshores turbine...
-
Damage-involved response of two colliding buildings under non-uniform earthquake loading
PublicationPounding between insufficiently separated buildings, which may result in considerable damage or may even lead to the total collapse of colliding structures, has been repeatedly observed during earthquakes. Earthquake-induced collisions of buildings has been intensively studied applying various structural models. It was assumed in the analyses, however, that the seismic excitation is identical for all structural supports; whereas,...
-
Application of the Bodner-Partom constitutive equations for modelling of the technical fabric Valmex used for the hanging roof of the Forest Opera in Sopot
PublicationThe study of an inelastic properties of the technical fabric Valmex used for 20 years as the roof structure of the Forest Opera in Sopot (Poland) is presented. The uniaxial tensile laboratory tests with constant strain rate have been conducted and analysed. Parameters of the Bodner-Partom constitutive model have been identified and verified by numerical simulations. Two approaches of the parameters identification have been proposed:...
-
Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches
PublicationThe paper presents quasi-static numerical simulations of the behaviour of short reinforced concrete beams without shear reinforcement under mixed shear-tension failure using the FEM and four various constitutive continuum models for concrete. First, an isotropic elasto-plastic model with a Drucker-Prager criterion defined in compression and with a Rankine criterion defined in tension was used. Next, an anisotropic smeared crack...
-
A subdomain model for armature reaction field and open‐circuit field prediction in consequent pole permanent magnet machines
PublicationIn this paper, the machine quantity, such as electromagnetic torque, self and mutual inductances, and electromotive force, is analytically calculated for non-overlapping winding consequent pole slotted machine for open-circuit field and armature reaction. The sub-domain approach of (2-D) analytical model is developed using Maxwell's equations and divide the problem into slots, slot-openings, airgap and magnets region, the magnet...
-
A review on analytical models of brushless permanent magnet machines
PublicationThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
-
"FEM Parametric Study on Ultimate Bearing Capacity of CFST Arch Bridge
Publication -
Comparison of natural frequencies of a circular saw blade obtained empirically and with FEM
PublicationThe knowledge of the natural frequencies’ values of circular saw blades is necessary to determine the minimal critical rotational speed in which they can work with required stability. Moreover, testing the circular saw blades with more complicated shapes, e.g. which have additional holes inside blades for cleaning knifes or additional indirect teeth in gullets, reveals some kind of problematic properties of these saw blades. The...
-
Experimental and Numerical Investigation of Mechanical Properties of Lightweight Concretes (LWCs) with Various Aggregates
PublicationHigh requirements for the properties of construction materials and activities directed at environment protection are reasons to look for new solutions in concrete technology. This research was directed at solutions affecting the reduction of energy consumption and CO2 emissions. The use of lightweight concretes (LWCs) allows one to meet both conditions at the same time. The purpose of the research presented in this paper was to...
-
Mechanics of mesh implanted into abdominal wall under repetitive load. Experimental and numerical study
PublicationThere are a number of papers discussing medical and mechanical aspects of ventral hernia management. Despite intensive work on the problem understanding, recurrences of the sickness still happen too often. For that reason new aspects of the problem must be considered. In this paper, a change in the abdominal implant’s stiffness is discussed, which is caused by cyclic loading. Such loading influence abdominal implant e.g. while...