Filters
total: 587
Search results for: MOLECULAR HYDROGEN
-
How acidic amino acid residues facilitate DNA target site selection
PublicationDespite the negative charge of the DNA backbone, acidic residues (Asp/Glu) commonly participate in the base readout, with a strong preference for cytosine. In fact, in the solved DNA/protein structures, cytosine is recognized almost exclusively by Asp/Glu through a direct hydrogen bond, while at the same time, adenine, regardless of its amino group, shows no propensity for Asp/Glu. Here, we analyzed the contribution of Asp/Glu...
-
CO2 Separation Using Supported Deep Eutectic Liquid Membranes Based on 1,2-propanediol
PublicationIn this work, deep eutectic solvents (DESs) composed of choline chloride, acetylcholine chloride or tetrabutylammonium chloride, and 1,2-propanediol were used as a liquid phase for polypropylene-based supported liquid membranes (SLMs) and evaluated for the separation of carbon dioxide from CO2/N2 mixtures. Fourier transform infrared spectra were obtained to confirm DES formation, and the thermal stability of solvents was investigated...
-
Tailoring a low-energy ball milled MnCo2O4 spinel catalyst to boost oxygen evolution reaction performance
PublicationThe development of cost-efficient oxygen evolution reaction (OER) catalysts is one of the most important tasks facing modern techniques for hydrogen production. In this work, for the first time, a low-energy ball milling process of MnCo2O4 (MCO) spinel powders, with a mechanical modification time exceeding 1 day was used. After 6 days of ball-milling, the obtained overpotential of the electrocatalyst reached the value of 375 mV...
-
Extractive detoxification of hydrolysates with simultaneous formation of deep eutectic solvents
PublicationThe hydrolysis of lignocellulosic biomass results in the production of so-called fermentation inhibitors, which reduce the efficiency of biohydrogen production. To increase the efficiency of hydrogen production, inhibitors should be removed from aqueous hydrolysate solutions before the fermentation process. This paper presents a new approach to the detoxification of hydrolysates with the simultaneous formation of in-situ deep eutectic...
-
Development of a simple biogas analyzer module (BAM) for real-time biogas production monitoring
PublicationAnaerobic digestion (AD) relies on the cooperation of specific microbial communities, making it susceptible to process disruptions that could impact biogas production. In this regard, this study presents a technological solution based on the Arduino platform, in the form of a simple online monitoring system that can track the produced biogas profile, named as biogas analyzer module (BAM). The applicability of the BAM focused on...
-
ANTIOXIDANT POWER SERIES (APS) AS A TOOL FOR RATIONAL DESIGN AND ASSESSMENT OF HEALTH PROMOTING PROPERTIES OF FUNCTONAL FOODS BASED ON ANTIOXIDANT PHYTOCHEMICALS
PublicationOver past decades, plantborne antioxidants dominated so called "translational research" in the area of food, nutrition, and disease prevention. Among consumers and producers, such phytochemicals are synonyms of nutriceuticals. Popularity and commercial success of antioxidants stems from mechanistic studies suggesting the involvement of reactive oxygen species in etiology of chronic diseases. However, epidemiology failed to provide...
-
Diamine derivatives of dimerized fatty acids and bio-based polyether polyol as sustainable platforms for the synthesis of non-isocyanate polyurethanes
PublicationA series of environmentally friendly non-isocyanate polyurethanes (NIPUs) were successfully prepared via the polyaddition reaction of bio-based polyether polyol-based cyclic carbonate with diamine derivative of dimerized fatty acids. The syntheses of NIPUs were realized by the three-step method in the absence of toxic solvents and, importantly, the process of carbonation did not require the use of elevated pressure. The effect...
-
Ab initio chemical kinetics of Isopropyl acetate oxidation with OH radicals
PublicationGlobal reactivity descriptors of isopropyl acetate (IPA) and thermo-kinetic aspects of its oxidation via OH radicals have been studied. Transition state theory (TST) was utilized to estimate the bimolecular rate constants. Ten oxidation pathways have been investigated, and all of them are exothermic. The potential energy diagram has been sketched using different pre- and post-reactive complexes for all reaction pathways. Rate coefficient...
-
Design Analysis of Micro Gas Turbines in Closed Cycles
PublicationThe problems faced by designers of micro-turbines are connected with a very small volume flow rate of working media which leads to small blades’ height and high rotor speed. In the case of gas turbines this limitation can be overcome by the application of a closed cycle with very low pressure at the compressor inlet (lower than atmospheric pressure). In this way we may apply a micro gas turbine unit of accepted efficiency to work...
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels
PublicationThe industrial-scale production of lignocellulosic-based biofuels from biomass is expected to benefit society and the environment. The main pathways of residues processing include advanced hydrolysis and fermentation, pyrolysis, gasification, chemical synthesis and biological processes. The products of such treatment are second generation biofuels. The degree of fermentation of organic substances depends primarily on their composition...
-
Structural and electrical transport properties of Pr-doped SrTi0.93Co0.07O3-δ a novel SOEC fuel electrode materials
PublicationSolid Oxide Electrolyzer Cells (SOECs) are very promising electrochemical devices for the production of syngas (H2/CO) by H2O and CO2 co-electrolysis. The structure, microstructure and electrical properties of the fuel electrode material play a crucial role in the performance of the whole cell and efficiency of electrocatalytic reduction of steam into hydrogen. In the present work, a novel Co and Pr co-doped SrTiO3-δ material attracted...
-
Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates
PublicationThis paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density....
-
Optimization of Polycrystalline CVD Diamond Seeding with the Use of sp³/sp² Raman Band Ratio
PublicationThe influence of various nanodiamond colloids used for seeding nondiamond substrates in microwave plasma enhanced chemical vapour deposition diamond process was investigated. Colloids based on deionized water, isopropanol alcohol and dimethyl sulfoxide (DMSO) were used with different grain size dispersion: 150, 400 and 35 nm, respectively. The influence of growth time was also taken into consideration and bias enhanced nucleation....
-
HIERARCHICAL CYCLES IN MODERN POWER SYSTEMS – EXERGY ANALYSIS UNDER PART LOADS
PublicationThe aim of the paper is to investigate thermodynamic efficiency of advanced hierarchic power cyclesunder partial loads by using of exergy analyze. Advanced hierarchical power systems arecomposed of few energy conversion cycles, most common are steam and gas cycles in various configurations, but they may contain fuel cells, ORC, lithium bromide absorption chillers and others. Moreover hierarchical cycles can be powered by several...
-
Insightful studies of AuCu nanostructures deposited on Ti platform: Effect of rapid thermal annealing on photoelectrochemical activity supported by synchrotron radiation studies
PublicationIn this work, we present the influence of annealing atmospheres during rapid thermal annealing (40◦C/s) on nanostructured Ti platforms modified by 10 nm layer of AuCu alloy obtained via magnetron sputtering. The AuCu/Ti platform annealed under hydrogen atmosphere exhibits the best photoelectrochemical activity under visible light, i.e. 27 times higher photocurrent than for pure Ti dimpled platform, and the lowest reflectance with minimum...
-
Exploring novel Cd(ii) complexes with 5-methyl-4-imidazolecarboxaldehyde: synthesis, structure, computational insights, and affinity to DNA through switchSense methodology
PublicationA series of four Cd(II) complexes with 5-methyl-4-imidazolecarboxaldehyde (L) with different inorganic anions within or outside the coordination sphere of general formula: [CdCl2 L2 ] (1), [CdBr2 L 2] (2), [CdI2L 2] (3), and [CdL4 ](PF6 )2 ·3H2 O (4) was synthesized through one-step and two-step reactions, respectively. All complexes were obtained as colorless crystals without the need for recrystallization and exhibited solubi- lity...
-
Kinetic characterization of hydrogen sulfide inhibition of suspended anammox biomass from a membrane bioreactor
PublicationThe inhibition effects of hydrogen sulfide (H2S) on anammox-enriched biomass from a laboratory membrane reactor were analyzed in a series of batch respirometric experiments. The determined half maximal inhibitory concentration (IC50) was 4.67 mg H2S-S L−1 at the constant pH = 7.0 and the total sulfide concentration varying between 1 and 15 mg TS-S L−1. In another test, the IC50 was found to be 4.25 mg H2S-S L−1 under a constant...
-
X-Ray Computer Tomography Study of Degradation of the Zircaloy-2 Tubes Oxidized at High Temperatures
PublicationThe investigations of high-temperature oxidation of zirconium alloys, applied for fuel pellets in nuclear power plants, are usually limited to oxidation kinetics, phase transformations and microstructural characterization. The purpose of this research was to characterize the degradation phenomena occurring within oxide layer and at the interface oxide/metal, on internal and external Zircaloy-2 tube...
-
Dia- and paramagnetic contributions to magnetizabilities of relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates
PublicationIn this paper we present tabulated data for relative diamagnetic and paramagentic contributions to the magnetizability ($\chi$) of the relativistic hydrogenlike atoms with a pointlike, motionless and spinless nucleus of charge $Ze$. Utilizing general analytical formulas for the diamagnetic ($\chi_{d}$) and paramagnetic ($\chi_{p}$) components of $\chi$, recently derived by us [P. Stefa{\'n}ska, 2020] with the aid of the Gordon...
-
Cellulosic bionanocomposites based on acrylonitrile butadiene rubber and Cuscuta reflexa: adjusting structure-properties balance for higher performance
PublicationDesign and manufacture of cellulosic nanocomposites with acceptable performance is in the period of a transition from fantasy to reality. Typically, cellulosic nanofillers reveal poor compatibility with polymer matrices. Thus, adjusting the balance between structure and properties of cellulosic bionanocomposites by careful selection of parent ingredients is the first priority. Herein, we incorporated Cuscuta reflexa derived cellulose...
-
Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation
PublicationDespite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0±1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on...
-
The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the Structure and Performance of Flexible Polyurethane/Ground Tire Rubber Composite Foams
PublicationThe use of waste tires is a very critical issue, considering their environmental and economic implications. One of the simplest and the least harmful methods is conversion of tires into ground tire rubber (GTR), which can be introduced into different polymer matrices as a filler. However, these applications often require proper modifications to provide compatibility with the polymer matrix. In this study, we examined the impact...
-
New synthesis route of highly porous InxCo4Sb12 with strongly reduced thermal conductivity
PublicationHighly porous, In-filled CoSb3 skutterudite materials with an attractive thermoelectric figure of merit (ZT * 1) and corresponding dense samples were fabricated through the cost-effective method of reduction in oxides in dry hydrogen and the pulsed electric current sintering (PECS) method, respectively. The reduction process was described in detail using in situ thermogravimetric analysis of Co2O3, Sb2O3 and In(NO3)35H2O separately...
-
Morphology, Photocatalytic and Antimicrobial Properties of TiO2 Modified with Mono- and Bimetallic Copper, Platinum and Silver Nanoparticles
PublicationNoble metal nanoparticles (NMNPs) enhanced TiO2 response and extended its activity under visible light. Photocatalytic activity of TiO2 modified with noble metal nanoparticles strongly depends on the physicochemical properties of NMNPs. Among others, the differences in the size of NMNPs seems to be one of the most important factors. In this view, the effect of the metal’s nanoparticles size, type and amount on TiO2 photocatalytic...
-
3,3'-Dibenzoyl-1,1'-dibenzyl-1,1'-(ethane-1,2-diyl)dithiourea
PublicationIn the title compound, C32H30N4O2S2, the carbonyl and thiocarbonyl groups are found in a rare synclinal conformation, with an S-C···C-O pseudo-torsion angle of 62.6(2)°. The molecule has Ci = S2 point-group symmetry with a crystallographic center of inversion located in the middle of the ethylene bridge. One of the symmetry-independent phenyl...
-
Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate
PublicationIn this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity- resonant type. The aim of research was determination of electron excitation temperature Texc gas temperature Tg and electron number density ne. All experimental tests were performed with a gas flow rate of 100 and 200 l/min and...
-
Highly effective degradation of selected groups of organic compounds by cavitation based AOPs under basic pH conditions
PublicationCavitation has become on the most often applied methods in a number of industrial technologies. In the case of oxidation of organic pollutants occurring in the aqueous medium, cavitation forms the basis of numerous advanced oxidation processes (AOPs). This paper presents the results of investigations on the efficiency of oxidation of the following groups of organic compounds: organosulfur, nitro derivatives of benzene, BTEX, and...
-
Effect of molar ratio [NCO]/[OH] groups during prepolymer chains extending step on the morphology and selected mechanical properties of final bio‐based thermoplastic poly(ether‐urethane) materials
PublicationThe main aim of this work was to investigate the effect of [NCO]/[OH] molar ratio used during the prepolymer chain extending step (with bio‐based diols) on the chemical structure, and thermomechanical and mechanical properties of thermoplastic poly(ether‐urethane)s. Thermoplastic poly(ether‐urethane)s were obtained from bio‐based polyol (polytrimethylene ether glycol), bio‐based glycol (1,4‐butanediol or 1,3‐propanediol), and 4,4'diphenylmethane...
-
Antimicrobial Activity of Honey
PublicationHoney has had a valued place in traditional medicine for centuries. It was used to overcome liver, cardiovascular and gastrointestinal problems and for treatment of some types of infectious disease. Particularly, good results were achieved in the case of application of this product for therapy of infected, difficult to heal wounds. The high health-promoting properties of honey have been recently confirmed in many research investigations....
-
Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species
PublicationIn order to protect the skin from UV radiation, personal care products (PCPS) often contain chemical UV-filters. These compounds can enter the environment causing serious consequences on the water ecosystems. The aim of this study was to examine, the effect of different factors, such as UV light, the presence of NaOCl and H2O2 on the formaldehyde formation during popular UV filter, 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA)...
-
Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices
PublicationIn the present paper, we report the phenomena of the formation of the novel composite nanostructures based on TiO2 nanotubes (NTs) over-grown by thin boron-doped diamond (BDD) film produced in Microwave Plasma Enhanced Chemical Vapor Deposition (PE MWCVD). The TiO2 nanotube array overgrown by boron-doped diamond immersed in 0.1 M NaNO3 can deliver high specific capacitance of 7.46 mF cm−2. The composite electrodes were characterized...
-
Fabrication and characterization of composite TiO2 nanotubes/ boron-doped diamond electrodes towards enhanced supercapacitors
PublicationThe composite TiO2 nanotubes / boron-doped diamond electrodes were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition resulting in the improved electrochemical performance. This composite electrode can deliver high specific capacitance of 7.46 mF cm‐− 2 comparing to boron-doped diamond (BDD) deposited onto flat Ti plate (0.11 mF cm‐− 2).The morphology and composition of composite electrode were characterized...
-
Electron scattering from 2-methyl–1,3-butadiene,C5H8, molecules: Role of methylation
PublicationWe report cross-section results from experimental and theoretical investigations into electron collisions with the 2-methyl–1,3-butadiene [C5H8] molecule. The current results are compared with our previous results for the 1,3-butadiene [C4H6] molecule, a structural homologue of 2-methyl–1,3-butadiene, to investigate how the methylation (the substitution of hydrogen atom by a methyl group) affects the shape and/or magnitude of the...
-
Chromatographic behavior of a new hybrid type RP material containing silica bonded 1,3-alternate 25,27-bis-[cyanopropyloxy]-26,28-bis-[3-propyloxy]-calix[4]arene
PublicationA novel 1,3-alternate 25,27-bis-[cyanopropyloxy]-26,28-bis-[3-propyloxy]-calix[4]arene-bonded silica gel stationary phase (CalixPrCN) was prepared and it's structure was confirmed by ATR-FTIR spectroscopy and elemental analysis. The CalixPrCN phase was characterized in terms of their surface coverage, hydrophobic selectivity, aromatic selectivity, shape selectivity, hydrogen bonding capacity, residue metal content, and silanol...
-
Brewery spent grain valorization through fermentation: Targeting biohydrogen, carboxylic acids and methane production
PublicationThis study investigated three different fermentation approaches to explore the potential for producing biohydrogen, carboxylic acids, and methane from hydrolysates of thermally dilute acid pretreated brewer's spent grains (BSG). Initially, the research focused on maximizing the volumetric hydrogen production rate (HPR) in the continuous dark fermentation (DF) of BSG hydrolysates by varying the hydraulic retention time (HRT). The...
-
Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry
PublicationPolycrystalline boron-doped diamond is a promising material for high-power aqueous electrochemical applications in bioanalytics, catalysis, and energy storage. The chemical vapor deposition (CVD) process of diamond forma-tion and doping is totally diversified by using high kinetic energies of deu-terium substituting habitually applied hydrogen. The high concentration of deuterium in plasma induces atomic arrangements and steric...
-
Reduction of CO2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels
PublicationDiverse forms of environmental pollution arise with the introduction of materials or energy that exert adverse effects on human health, climate patterns, ecosystems, and beyond. Rigorous emission regulations for gases resulting from fuel combustion are being enforced by the European Union and the International Maritime Organization (IMO), directed at maritime sectors to mitigate emissions of SOx, NOx, and CO2. The IMO envisions...
-
Unraveling the Interplay between DNA and Proteins: A Computational Exploration of Sequence and Structure-Specific Recognition Mechanisms
PublicationMy PhD dissertation focused on DNA-protein interactions and the recognition of specific DNA sequences and structures. I discovered that acidic amino acid residues (Asp/Glu) play a crucial role by exhibiting a preference for cytosine. Their contribution to binding affinity depends on nearby cytosines, balancing electrostatic repulsion with specific interactions. Acidic residues act as negative selectors, discouraging non-cytosine...
-
Hybrid metal and non-metal activation of Oxone by magnetite nanostructures co-immobilized with nano-carbon black to degrade tetracycline: Fenton and electrochemical enhancement with bio-assay
PublicationElectrochemically synthesized magnetite nanostructures (ESMNPs) as a metal activator and nano-carbon black (NCB) as a non-metal activator were co-immobilized by alginate natural polymer to activate Oxone for the degradation of tetracycline (TC) antibiotic. The formation of sulfate radical was indirectly confirmed during the Oxone/ESMNPs/NCB/alginate process via the addition of scavenging compounds. This study revealed the high...
-
Deep Eutectic Solvents: Properties and Applications in CO2 Separation
PublicationNowadays, many researchers are focused on finding a solution to the problem of global warming. Carbon dioxide is considered to be responsible for the “greenhouse” effect. The largest global emission of industrial CO2 comes from fossil fuel combustion, which makes power plants the perfect point source targets for immediate CO2 emission reductions. A state-of-the-art method for capturing carbon dioxide is chemical absorption using...
-
Optimized photodegradation of palm oil agroindustry waste effluent using multivalent manganese–modified black titanium dioxide
PublicationThis article presents a methodological approach to use manganese (Mn3+Mn7+)-modified black titanium dioxide (Mn/BTiO2) as a photocatalyst to optimize and improve visible-light-driven photodegradation of treated agro-industrial effluent (TPOME). A modified wet chemical process was used to prepare BTiO2. The BTiO2 was then wet impregnated with Mn and calcined at 300 °C for 1 h to produce Mn/BTiO2. The activity of Mn/BTiO2 was investigated...
-
Nickel-based catalysts for electrolytic decomposition of ammonia towards hydrogen production
PublicationNickel is an attractive metal for electrochemical applications because it is abundant, cheap, chemically resilient, and catalytically active towards many reactions. Nickel-based materials (metallic nickel, its alloys, oxides, hydroxides, and composites) have been also considered as promising electrocatalysts for ammonia oxidation. The electrolysis of ammonia aqueous solution results in evolution of gaseous hydrogen and nitrogen....
-
Thermal Instability of Choline Chloride-Based Deep Eutectic Solvents and Its Influence on Their Toxicity─Important Limitations of DESs as Sustainable Materials
PublicationDeep eutectic solvents (DESs) have become a hot topic in many branches of science due to their remarkable properties. They have been studied in a wide variety of applications. In particular, choline chloride (ChCl)-based DESs are one of the most commonly used representatives of these fluids. Nevertheless, in order to apply DESs in some fields, it is essential to guarantee their stability, reusability, and biocompatibility. In this...
-
Organic-inorganic composites consisted of poly(3,4-ethylenedioxythiophene)and Prussian Blue analogues
PublicationThe organic-inorganic material consisted of poly(3,4-ethylenedioxythiophene) (pEDOT) and copper hexacyanoferrate (Cuhcf) was synthesized. The pEDOT film with Fe(CN)63−/4− as counter-ions potentiodynamically polarized in aqueous CuCl2 electrolyte brings about stable hybrid material (pEDOT/Cuhcf) performing single redox activity of FeII/III at a formal potential Ef = 0.61 V (vs. Ag/AgCl/0.1 M KCl) and less clearly shaped two redox...
-
(R,R)-1-Acetyl-1'-(2,4,6-trinitrophenyl)-2,2'-bipyrrolidine
Publication(R,R)-1-Acetyl-1'-(2,4,6-trinitrophenyl)-2,2'-bipyrrolidine has been synthesized and its rentgenostructure has been determined. The structure of the title molecule, C16H19N5O7, is mainly determined by the steric effect of a bulky 2,4,6-trinitrophenyl group attached to the N atom of a pyrrolidine ring. Both pyrrolidine rings adopt an envelope conformation, with one of the methylene C atoms as the flap in each case, and the N-C-C-N...
-
Electrochemistry from first-principles in the grand canonical ensemble
PublicationProgress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are...
-
Structure, Physicochemical and Biological Properties of an Aqua (2,2′,2′′-Nitrilotriacetato)-oxidovanadium(IV) Salt with 4-Methylpyridinium Cation
PublicationThe crystal structure of a nitrilotriacetate (nta) oxidovanadi-um(IV) salt with 4-methylpyridinium cation, [4-Me(Py)H]+, of [4-Me(Py)H][VO(nta)(H2O)] stoichiometry was determined. The com-plex comprises a discrete mononuclear [VO(nta)(H2O)]–coordinationentity that can be rarely found among other known compounds con-taining nitrilotriacetate oxidovanadium(IV) moieties. The complex wascharacterized by spectroscopic (IR and EPR) methods,...
-
Automotive fleet repair facility wastewater treatment using air/ZVI and air/ZVI/H2 O2 processes
PublicationAdvanced automotive fl eet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2 O2 ) process for different process parameters: ZVI and H2 O2 doses, time, pH. The highest Chemical Oxygen Demand (COD) removal effi ciency, 76%, was achieved for ZVI/H2 O2 doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and...
-
Cathodically activated Au/TiO2 nanocomposite synthesized by a new facile solvothermal method: An efficient electrocatalyst with Pt-like activity for hydrogen generation
PublicationWe report here a facile, template-free and one-step solvothermal approach for the synthesis of high-temperature stable gold/titania nanocomposite (NCs), providing a new, simple, quick and inexpensive wet-chemical route. Our approach is based on the assembly of gold salt and titanium butoxide in dimethyl sulfoxide (DMSO). Also, we present here, for the first time, a cathodically activated Au/TiO2 catalyst with Pt/C activity for...