Filters
total: 1297
displaying 1000 best results Help
Search results for: LEARNING
-
Farzin Kazemi
PeopleHis main research areas are seismic performance assessment of structures and seismic hazard analysis in earthquake engineering. He performed a comprehensive study on the effect of pounding phenomenon and proposed modification factors to modify the seismic collapse capacity of structures or predict the seismic collapse capacity of structures which were retrofitted with linear and nonlinear Fluid Viscous Dampers (FVDs). His current...
-
Active Control of Highly Autocorrelated Machinery Noise in Multivariate Nonminimum Phase Systems
PublicationIn this paper, a novel multivariate active noise control scheme, designed to attenuate disturbances with high autocorrelation characteristics and preserve background signals, is proposed. The algorithm belongs to the class of feedback controllers and, unlike the popular feedforward FX-LMS approach, does not require availability of a reference signal. The proposed approach draws its inspiration from the iterative learning control...
-
Review of the Complexity of Managing Big Data of the Internet of Things
PublicationTere is a growing awareness that the complexity of managing Big Data is one of the main challenges in the developing feld of the Internet of Tings (IoT). Complexity arises from several aspects of the Big Data life cycle, such as gathering data, storing them onto cloud servers, cleaning and integrating the data, a process involving the last advances in ontologies, such as Extensible Markup Language (XML) and Resource Description...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych
PublicationW pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...
-
Human Feedback and Knowledge Discovery: Towards Cognitive Systems Optimization
PublicationCurrent computer vision systems, especially those using machine learning techniques are data-hungry and frequently only perform well when dealing with patterns they have seen before. As an alternative, cognitive systems have become a focus of attention for applications that involve complex visual scenes, and in which conditions may vary. In theory, cognitive applications uses current machine learning algorithms, such as deep learning,...
-
CHALK & TALK OR SWIPE & SKYPE?
PublicationTechnology in classroom is a matter of heated discussions in the field of education development, especially when multidisciplinary education goes along with language skills. Engineers’ education requires theoretical and practical knowledge. Moreover, dedicated computer skills become crucial for both young graduates and experienced educators on the labor market. Teaching online with or without using different Learning Management...
-
Chosen Methods Supporting Didacts of Descriptive Geometry
PublicationThe article presents reflections on the practical ways of supporting the teaching processes of descriptive geometry in the context of psychological theories of learning and motivation.
-
Category Adaptation Meets Projected Distillation in Generalized Continual Category Discovery
Publication"Generalized Continual Category Discovery (GCCD) tackles learning from sequentially arriving, partially labeled datasets while uncovering new categories. Traditional methods depend on feature distillation to prevent forgetting the old knowledge. However, this strategy restricts the model’s ability to adapt and effectively distinguish new categories. To address this, we introduce a novel technique integrating a learnable projector...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Tacit knowledge acquisition & sharing, and its influence on innovations: A Polish/US cross-country study
PublicationThis study measures the relationship between tacit knowledge sharing and innovation in the Polish (n=350) and US (n=379) IT industries. Conceptually, the study identifies the potential sources of tacit knowledge development by individuals. That is, the study examines how “learning by doing” and “learning by interaction” lead to a willingness to share knowledge and, as a consequence, to support process and product/service innovation....
-
Agnieszka Mikołajczyk-Bareła dr inż.
People -
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Kształcenie ustawiczne – trendy w krajach regionu Morza Bałtyckiego
PublicationKwestie kształcenia ustawicznego i dostosowania kwalifikacji do potrzeb rynku pracy są przedmiotem dyskusji zarówno na szczeblu europejskim, jak i poszczególnych krajów. Działania administracji powinny zmierzać w kierunku określenia zapotrzebowania na określone umiejętności oraz aktywizacji społeczeństwa poprzez realizację idei uczenia się przez całe życie. Doświadczenia krajów skandynawskich dostarczają wielu przykładów dobrych...
-
Improving css-KNN Classification Performance by Shifts in Training Data
PublicationThis paper presents a new approach to improve the performance of a css-k-NN classifier for categorization of text documents. The css-k-NN classifier (i.e., a threshold-based variation of a standard k-NN classifier we proposed in [1]) is a lazy-learning instance-based classifier. It does not have parameters associated with features and/or classes of objects, that would be optimized during off-line learning. In this paper we propose...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Management and Economics 2022
e-Learning CoursesIntroduction to Management and Economics, Learning by Doing method based upon trends in geopolitics and modern economics frameworks, strategy and Business Models Management Tools SEMESTR II Green Technologies and Monitoring
-
TF-IDF weighted bag-of-words preprocessed text documents from Simple English Wikipedia
Open Research DataThe SimpleWiki2K-scores dataset contains TF-IDF weighted bag-of-words preprocessed text documents (raw strings are not available) [feature matrix] and their multi-label assignments [label-matrix]. Label scores for each document are also provided for an enhanced multi-label KNN [1] and LEML [2] classifiers. The aim of the dataset is to establish a benchmark...
-
Bewertung der qualität von online lernmodulen = Próba oceny jakości e-Lerningowych modułów online
PublicationW pracy dokonano klasyfikacji rozwiązań modułów (systemów) e-Learning wg. sposobu ich tworzenia (tj. systemy autorskie, komercyjne, otwarte, zamknięte, standardowe, niestandardowe), funkcjonalności, interaktywności, obciążania sieci. Przedstawiono również wybrane kryteria (tj. merytoryczne, dydaktyczne i multimedialne) oceny jakości modułów dostępnych online pod kątem ich wykorzystywania w systemach zdalnego nauczania. Na zakończenie...
-
When Neural Networks Meet Decisional DNA: A Promising New Perspective for Knowledge Representation and Sharing
PublicationABSTRACT In this article, we introduce a novel concept combining neural network technology and Decisional DNA for knowledge representation and sharing. Instead of using traditional machine learning and knowledge discovery methods, this approach explores the way of knowledge extraction through deep learning processes based on a domain’s past decisional events captured by Decisional DNA. We compare our approach with kNN (k-nearest...
-
Julita Wasilczuk dr hab.
PeopleBorn on 5th of April, 1965 in Gdansk. In 1987-1991 studied the economics of transport, at the University of Gdansk. At 1993 she started to work at the Faculty of Management and Economics. In 1997 received a PhD at the faculty, in 2006 habilitation at the Faculty of Management, University of Gdansk. Since 2009 Associate Professor at Gdansk University of Technology. In 2010-2012 Associate Professor of Humanistic High School at Gdansk. The...
-
Hybrid Laboratory of Radio Communication With Online Simulators and Remote Access
PublicationContribution: Two toolsets for the remote teaching of radio communication laboratory classes: 1) online simulators for individual work of students and 2) a remote access system to laboratory workstations for group work. Initial assumptions and method of implementation of both tools are presented. Background: The COVID-19 pandemic has forced a change in teaching at all levels of education. The specificity of practical classes, such...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublicationThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
The Double Cognitive Bias of Mistakes: A Measurement Method
PublicationThere is no learning without mistakes. However, making mistakes among knowledge workers is s�ll seeing shameful. There is a clash between posi�ve a�tudes and beliefs regarding the power of gaining new (tacit) knowledge by ac�ng in new contexts and nega�ve a�tudes and beliefs toward accompanying mistakes that are sources of learning. These contradictory a�tudes create a bias that is doubled by the other shared solid belief...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublicationW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Patryk Ziółkowski dr inż.
PeopleAssistant Professor at Gdansk Tech. He participated in international projects, including projects for the Ministry of Transportation of the State of Alabama (2015), he is also the winner of a grant from the Kosciuszko Foundation for conducting research in the USA, which he completed in 2018. An expert in the field of artificial intelligence. His main area of research interest is the application of artificial intelligence in Civil...
-
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublicationThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Podstawy uczenia głębokiego 2022
e-Learning Courses{mlang pl}Kurs podstaw uczenia głębokiego przeznaczony dla studentów kierunku Informatyka.{mlang} {mlang en}This is a course about deep learning basics dedicated for Computer Science students.{mlang}
-
How to Design Affect-aware Educational Systems – the AFFINT Process Approach
PublicationComputer systems, that support learning processes, can adapt to the needs and states of a learner. The adaptation might directly address the knowledge deficits and most tutoring systems apply an adaptable learning path of that kind. Apart from a preliminary knowledge state, there are more factors, that influence education effectiveness and among those there are fluctuating emotional states. The tutoring systems may recognize or...
-
Between therapy effect and false-positive result in animal experimentation
PublicationDespite the animal models’ complexity, researchers tend to reduce the number of animals in experiments for expenses and ethical concerns. This tendency makes the risk of false-positive results, as statistical significance, the primary criterion to validate findings, often fails if testing small samples. This study aims to highlight such risks using an example from experimental regenerative therapy and propose a machine-learning...
-
THRIVING AND JOB SATISFACTION IN MULTICULTURAL ENVIRONMENTS OF MNCS
PublicationPurpose of the article The aim of the paper is to analyze the relationship between thriving and job satisfaction in multicultural environments of multinational corporations (MNCs). Methodology/methods The quantitative cross-sectional study was conducted on the sample of 128 individuals from subsidiaries of various MNCs located in Poland involved in intercultural interactions. Scientific aim The aim of this study was to examine...
-
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublicationDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublicationRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
Acquisition and indexing of RGB-D recordings for facial expressions and emotion recognition
PublicationIn this paper KinectRecorder comprehensive tool is described which provides for convenient and fast acquisition, indexing and storing of RGB-D video streams from Microsoft Kinect sensor. The application is especially useful as a supporting tool for creation of fully indexed databases of facial expressions and emotions that can be further used for learning and testing of emotion recognition algorithms for affect-aware applications....
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublicationThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Aktywności stymulujące refleksję w nauczaniu języka pisanego w wirtualnej klasie
PublicationThe paper aims to show how to engage students attending an online language course in various activities which by stimulating reflection enhance the learning process and result in better learning outcomes. By blending cognitivist, constructivist, constructionist and behavioural ideas, course developers and tutors can produce materials and use methods which satisfy the varied needs of adults who want to improve their writing skills....
-
Transformational leadership for researcher’s innovativeness in the context of tacit knowledge and change adaptability
PublicationThis study explores how a learning culture supported by transformational leadership influences tacit knowledge sharing and change adaptability in higher education and how these relations impact this sector’s internal and external innovativeness. The empirical model was tested on a sample of 368 Polish scientific staff using the structural equation modeling (SEM) method. Then results were expanded by applying OLS regression using...
-
Uczenie się przez całe życie
PublicationW pracy przedstawiono genezę ustanowienia europejskiego obszaru uczenia się przez całe życie oraz podstawowe zasady Lifelong Learning. Omówiono krajowe uwarunkowania procesu LLL oraz walidację efektów uczenia się.
-
Evaluating the Use of Edge Devices for Detection and Tracking of Vehicles in Smart City Environment
PublicationThis paper introduces a Smart City solution designed to run on edge devices, leveraging NVIDIA's DeepStream SDK for efficient urban surveillance. We evaluate five object-tracking approaches, using YOLO as the baseline detector and integrating three Nvidia DeepStream trackers: IOU, NvSORT, and NvDCF. Additionally, we propose a custom tracker based on Optical Flow and Kalman filtering. The presented approach combines advanced machine...
-
Optimising approach to designing kernel PCA model for diagnosis purposes with and without a priori known data reflecting faulty states
PublicationFault detection plays an important role in advanced control of complex dynamic systems since precise information about system condition enables efficient control. Data driven methods of fault detection give the chance to monitor the plant state purely based on gathered measurements. However, they especially nonlinear, still suffer from a lack of efficient and effective learning methods. In this paper we propose the two stages learning...
-
Hossein Nejatbakhsh Esfahani Dr.
PeopleMy research interests lie primarily in the area of Learning-based Safety-Critical Control Systems, for which I leverage the following concepts and tools:-Robust/Optimal Control-Reinforcement Learning-Model Predictive Control-Data-Driven Control-Control Barrier Function-Risk-Averse Controland with applications to:-Aerial and Marine robotics (fixed-wing UAVs, autonomous ships and underwater vehicles)-Multi-Robot and Networked Control...
-
Gender as a Moderator of the Double Bias of Mistakes – Knowledge Culture and Knowledge Sharing Effects
PublicationThere is no learning without mistakes. The essence of the double bias of mistakes is the contradiction between an often-declared positive attitude towards learning from mistakes, and negative experiences when mistakes occur. Financial and personal consequences, shame, and blame force desperate employees to hide their mistakes. These adverse outcomes are doubled in organizations by the common belief that managers never make mistakes,...
-
Projekt Leonardo da Vinci ''Wirtualne kursy zawodowego języka angielskiego oraz system ich ewaluacji VENOCES''.
PublicationProject VENOCES ma na celu podniesienie poziomu nauczania języków obcych oraz ułatwienie dostępu do wiedzy specjalistycznej przez stworzenie wirtualnych kursów językowych w dziedzinach istotnych dla wszystkich partnerów stosując nowoczesne technologie multimedialne oraz innowacyjne podejście metodologiczne CLIL (ang. Content and Language Learning Approach). Niewątpliwą innowacją założoną przez twórców projektu będzie zastosowanie,...
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublicationIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
Online Interactivity – Shift Towards E-textbook-based Medical Education
PublicationTextbooks have played the leading role in academic education for centuries and their form has evolved, adapting to the needs of students, teachers and technological possibilities. Advances in technology have caused educators to look for new sources of knowledge development, which students could use inside and outside the classroom. Today’s sophisticated learning tools range from virtual environments to interactive multimedia resources,...
-
Study on Strategy in University Laboratory Class Teaching
PublicationLaboratory teaching is a critical way to ensure the effective input of techniques in engineering learning. Laboratory teaching not only contributes to improving course quality but also helps enrich comprehensive engineering application ability. However, there are some typical problems in current university laboratory teaching, such as rigid and isolated course design, outdated contents and materials, and not encouraging innovation...